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Part 1:

Sample Statistics
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1. Introductory material

• Fact: The distribution of a random variable (rv) X is unknown.

• Given the context of the underlying random phenomenon, we can say that FX
belongs to some specified family F of distribution functions.

• Question: Which member of F is the true distribution function of X?

• To answer this question, one distinguishes between (2) parametric &
(3) non-parametric (1) statistical models.

• In what follows, we first explain these concepts!
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TERMINOLOGY:

1. Statistical model

= a class of distributions used to describe a rv X .

Examples:

•M1 = {N(µ, σ2)|µ ∈ R, σ > 0}, two-parameter normal family

•M2 = {N(µ0, σ
2)|σ > 0}, one-parameter normal family with given mean

•M3 = {the set of symmetric bell-shaped distributions}

•M4 = {F : F is a continuous cdf}
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2. Parametric model

= a statistical model of probability density functions (pdf’s) which depend only
on a finite-dimensional parameter:

M = {f (x, θ)|θ = (θ1, . . . , θk) ∈ Θ ⊂ Rk}

where f is a pdf depending on a k−dimensional parameter θ. The parameter
space Θ is the set of possible parameter values in the model.

Our examples: M1 & M2 are parametric models:

•M1 : θ = (µ, σ), Θ = {(µ, σ) : µ ∈ R, σ > 0} ⊂ R2

•M2 : θ = σ, Θ = {σ ∈ R : σ > 0} ⊂ R
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3. Non-parametric model

= a model which cannot be described by a finite-dimensional parameter.

Our examples: M3 & M4 are non-parametric models

• In this course, we will focus on parametric statistical models, hence each
member of the family F can be specified by parameter θ of a finite dimension k.

• Problem: Population parameter θ is unknown.

• Question: Is there a way to derive information from it?

c© Martial Luyts 5



• Answer: Based on a given sample X1, . . . , Xn from X , estimators for θ can be
derived. Sample surveys are used to obtain information about a large population
by examining only a small fraction of that population.

• One can have several estimators for the same parameter. This raises the
question whether one of the estimators should be preferred, and why.

• The theory of (sample) statistics based on parametric models is called
parametric statistics. Non-parametric statistics (distribution-free
statistics) is the theory of (sample) statistics which does not assume a
parametric model.

• In view of a sound statistical theory we make a distinction between data sample
and mathematical sample, and introduce the following concepts:

Population - data sample - mathematical sample

Parameter - data statistic - sample statistic
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• Example: Distribution of the length in a population

Purpose: Obtain relevant and reliable information on the distribution of length
of individuals in a population.

• Random variable:
X = Length of a randomly chosen individual in the population (cm)

• Statistical model
Model distribution used for X : X ∼ N(µ, σ2)

• Population parameters:

µ = E(X) population mean (mean length)

σ2 = V ar(X) population variance

Commonly we have to our disposal a set of n observations x1, . . . , xn that are n
realizations of X . These observations are often the results obtained from n
independent repetitions of same random experiment, where each repetition of
experiment was carried out under same circumstances.
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An observed sample of size n: data (observations) x1, . . . , xn

• Observed sample statistics

x̄ =
∑
xi
n observed sample mean

s̃2 =
∑

(xi−x̄)2

n observed sample variance

• New sample provides new data and new data statistics.

⇒ values x1, . . . , xn can be considered as realizations of n independent
random variables X1, . . . , Xn following the same statistical model
(i.e. having same distribution as population rv X).
Random Sample of size n from X is n-tuple (X1, . . . , Xn) of independent rv’s
all having same distribution as X . X1, . . . , Xn are iid (same distribution as X).

• Also the values x̄ and s̃2 are realisations of X̄ and S̃2.

X =
∑
Xi
n sample mean

S̃2 =
∑

(Xi−X)2

n sample variance
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2. Strategy for the study of the sample
statistic distribution

• Suppose we have n observations x1, . . . , xn.

• Let T be given function (not depending on any unknown parameter) defined on
Rn and consider T (x1, . . . , xn).

• Definition:

If the function T is such that T (X1, . . . , Xn) is a rv, then T = T (X1, . . . , Xn)
is a statistic.

• Often, a statistical problem reduces to finding the distribution of this statistic.

c© Martial Luyts 9



• Under a general population distribution one usually tries to obtain:

1. the values of E(T ) and V ar(T ) without assumptions on the population
distribution, except mild conditions such as the existence of the mean
µ = E(X) and/or second moment E(X2)

2. an approximate distribution

• asymptotics (asymptotic value and distribution) for large sample size (limit
theorems for n→∞):

• the distribution of a slightly modified statistic

3. improving approximate distributions

4. the exact distribution of T , under a specific family of population distributions,
e.g. under the normal model X ∼ N(µ, σ2)
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Population Data sample (ob-
served)

(Mathematical) sam-
ple

Population rv X : rv un-
der investigation.
Population distribu-
tion: distribution of X
(i.e. FX , fX or MX).

Data-sample: sequence
of random observations
x1, . . . , xn for X , thus
numbers.

Mathematical sample
of size n fromX : sequence
of rv’s X1, . . . , Xn iid as
X .

Population parameter:
number θ = g(FX) func-
tion of distribution of X ,
usually unknown.

Data statistic: number
t = T (x1, . . . , xn) func-
tion of the data ⇒ esti-
mate for θ.

Sample statistic: rv
T = T (X1, . . . , Xn) func-
tion of the sample ⇒ esti-
mator for θ.

Problem: obtain informa-
tion on distribution of X
(that is on FX or fX ,
e.g. on the value of a pop-
ulation parameter θ).

Data provide information.
Data statistics are used
to estimate population pa-
rameters.

accuracy/efficiency of an
estimate is described by
the distribution of the cor-
responding sample statistic
(sampling distribution).
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3. Sample statistics

Given iid sample X1, . . . , Xn from population X .

Parameter Corresponding sample statistic

µ = E(X) X =
∑
Xi
n

σ2 = E[(X − µ)2] V 2 =
∑

(Xi−µ)2

n

S̃2 =
∑

(Xi−X)2

n , S2 =
∑

(Xi−X)2

n−1 = n
n−1S̃

2

αk = E(Xk) ak =
∑
Xk
i

n

µk = E[(X − µ)k] bk =
∑

(Xi−µ)k

n , mk =
∑

(Xi−X)k

n
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4. Moments of sample statistics

• The sample moments are estimators of the corresponding population moments

• Question: But what can we say about their qualities (properties)?

• Of particular interest are the sample mean and the sample variance!

• Reminder: Consider an iid sample X1, . . . , Xn from a population X with
mean E(X) = µ and variance V ar(X) = σ2, and let

X =

∑
Xi

n
, V 2 =

∑
(Xi − µ)2

n
, S̃2 =

∑
(Xi − X̄)2

n
, S2 =

∑
(Xi − X̄)2

n− 1
,

respectively called the sample mean, the sample variance with known mean, the
sample variance with weight n, the sample variance with weight n− 1 (or bias
corrected sample variance).
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SOME PROPERTIES:

• Linkage: Variation decomposition theorem: SS lemma∑
i

(Xi − µ)2 =
∑
i

(
Xi −X

)2
+ n

(
X − µ

)2
.

or, equivalently,

V 2 = S̃2 +
(
X − µ

)2
.

•Moments:

1. For the sample mean X :

E(X) = µ, V ar(X) =
σ2

n
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2. For the sample variance with known mean:

E(V 2) = σ2, V ar(V 2) =
µ4 − σ4

n

where µk = E(X − µ)k.

3. For the sample variances with estimated mean:

E(S̃2) =
n− 1

n
σ2, E(S2) = σ2

Each equality holds provided the population moments on the right side exist.
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5. Sample statistics distributions

To investigate the sample statistics distributions, we make a separation between
Gaussian and non-Gaussian populations for rv X.
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5.1. Gaussian populations

THEOREM:

Consider an iid normal sample X1, . . . , Xn, hence ∀i : Xi ∼ N(µ, σ2), then

1. X ∼ N
(
µ, σ

2

n

)
, X−µ

σ/
√
n
∼ N(0, 1).

2. nV
2

σ2 =
∑

(Xi−µ)2

σ2 ∼ χ2
n.

3. X and S2 are independent rvs.

4. (n−1)S2

σ2 = n S̃2

σ2 =
∑

(Xi−X)2

σ2 ∼ χ2
n−1.

5. T = X−µ
S/
√
n
∼ tn−1.
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6.
S2

1

S2
2
/
σ2

1

σ2
2

=
∑

(Xi−X)
2
/(n1−1)∑

(Yj−Y )
2
/(n2−1)

/
σ2

1

σ2
2
∼ Fn1−1,n2−1

where

X =

∑
Xi

n
, V 2 =

∑
(Xi − µ)2

n
, S̃2 =

∑
(Xi − X̄)2

n
, S2 =

∑
(Xi − X̄)2

n− 1

and where the last item concerns the variance ratio S2
1/S

2
2 of two independent

normal samples: X1, . . . , Xn1 iid from X ∼ N(µ1, σ
2
1), and Y1, . . . , Yn2 iid from

Y ∼ N(µ2, σ
2
2), with X and Y independent.
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Reminder: For the proof of the former theorem, remember that:

1. If Z ∼ N(0, 1), then U = Z2 ∼ χ2
1, i.e. χ2 distribution with 1 df.

(df: degree of freedom.)

2. If U1, . . . , , Un are independent χ2 rvs with 1 df, then V = U1 + . . . + Un ∼ χ2
n,

i.e. χ2 distribution with n df.

3. If Z ∼ N(0, 1) and U ∼ χ2
n and Z and U are independent, then Z√

U/n
∼ tn, i.e.

Student’s t distribution with n df.

4. If U and V are independent χ2 rvs with resp. m and n df, then
W = U/m

V/n ∼ Fm,n, i.e. F distribution with m and n df.
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PROOF:

1. Since X is linear combination of independent normal variables, it is normally
distributed with E(X) = 1

n

∑n
i=1E(Xi) = 1

n

∑n
i=1 µ = µ and

V ar(X) = 1
n2

∑n
i=1 V ar(Xi) = σ2/n. Standardizing gives N(0, 1).

2. Xi ∼ N(µ, σ2)⇒ Xi−µ
σ ∼ N(0, 1)⇒

∑n
i=1

(
Xi−µ
σ

)2

∼ χ2
n.
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3. This states the independence of the sample mean and the sample variance in a
normal sample. An equivalent form is: in a normal sample the statistics

∑
iXi

and
∑

i(Xi −X)2 are independent.

• Xi −X and X are independent if covariance is zero (since bivariate normal)

Cov(Xi −X,X) = Cov(Xi, X)− Cov(X,X)

=
1

n

n∑
j=1

Cov(Xi, Xj)− V ar(X)

=
1

n
Cov(Xi, Xi)−

σ2

n
= 0

• Hence (Xi −X)2 and X are independent.

• Hence
∑

i(Xi −X)2 and X are independent.
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4.
∑

(Xi−µ)2

σ2 =
∑

[(Xi−X)+(X−µ)]2

σ2 =
∑

(Xi−X)2

σ2 +
(
X−µ
σ/
√
n

)2

.

This is relation of form W = U + V and since U and V are independent:
MW (t) = MU(t)MV (t).

⇒MU(t) = MW (t)
MV (t) = (1−2t)−n/2

(1−2t)−1/2 = (1− 2t)−(n−1)/2, which is the mgf of a rv with

χ2
n−1 distribution.

5. X−µ
S/
√
n

=

(
X−µ
σ/
√
n

)
√
S2/σ2

, which is the ratio of N(0, 1) rv to the square root of an

independent rv with χ2
n−1 distribution divided by its degrees of freedom.

6. Follows immediately from [4].
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5.2. Non-Gaussian populations

• In some cases, exact sampling distributions are obtained for non-normal
populations.

Examples:

1. Sample mean from an exponential population

If X1, . . . , Xn is an iid sample from a population X ∼ Exp(λ) then

2λnX ∼ χ2
2n

or X ∼ Gamma
(
n, 1

nλ

)
∼ 1

2λn χ
2
2n.
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2. Sample mean from a Cauchy distribution

If X1, . . . , Xn are iid as X ∼ Cauchy(µ, σ) then

X ∼ Cauchy(µ, σ)

• Question: But what can we say in general when the population does not follow
a normal distribution?

• Answer: Limit theorems.
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Part 2:

Limit Theorems
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1. Law of Large numbers (LLN)

THEOREM:

Let X1, . . . , Xn be a sequence of independent rvs with E(Xi) = µ <∞ and
V ar(Xi) = σ2 <∞ for i = 1, . . . , n. Let X =

∑
iXi/n, then for n→∞

X
P−→ µ

PROOF:

Since the Xi are independent we know that

E(X) =
1

n

n∑
i=1

E(Xi) = µ and V ar(X) =
1

n2

n∑
i=1

V ar(Xi) =
σ2

n
.
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The result now follows immediately from Chebyshev’s inequality

P (|X − µ| > ε) ≤ V ar(X)

ε2
=

σ2

nε2
→ 0 as n→∞
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1.1. Visualization through simulation

Let X1, . . . , Xn be independent Bernoulli rvs with p = 0.5
⇒ E(Xi) = 0.5 and V ar(Xi) = 0.25.

• Example: Tossing fair coins with recording the number of heads

. In the first 10 flips, the coin landed headsup 4 times ⇒ x = 0.4

. After 30 tosses, the proportion of heads (x) was 0.567 and after 200 tosses it
was 0.502.

. After 10000 tosses, he observed 5067 heads ⇒ x = 0.5067 ∼ E(Xi)

. Visualization: http :
//digitalfirst.bfwpub.com/stats applet/stats applet 10 prob.html
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1.2. Application in Gambling:
Casino roulette

• If you are playing roulette, each spin is
independent from the previous ones.

• The roulette wheel has 18 red pockets
out of 37 (European and French). The
number of blacks is the same. That
said, the probability for both red and
black is 48.65%.

• According to the law of large num-
bers, the more spins are completed, the
closer the results of red and black will
be to their theoretical probability.
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• Important: There is no principle that a small number of spins will coincide with
the expected value or that one spin will immediately be ”balanced” by the others
(also known as Gambers fallacy)

. The Gambers fallacy is the irrational belief that prior outcomes in a series
of events affect the probability of a future outcome, even though the events
in question are independent and identically distributed.
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2. Central Limit Theorem (CLT)

Reminder: If X1, . . . , Xn are iid, we know

• E[X ] = E[X1].

• V ar(X) = 1
nV ar(X1).

• Distribution of sample mean of normal distributed variables

X1, . . . , Xn ∼ N(µ, σ2) and independent ⇒ X ∼ N(µ,
σ2

n
).

Main question: But what if variables are not generated from normal distribution?
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THEOREM:

If X1, . . . , Xn are independent and identically distributed rvs with finite second
moment E(X2), and hence with finite mean µ and variance σ2, then for n→∞

P

[(
X − E[X1]√
V ar(X1)/n

)
≤ x

]
→ Φ(x) ∀x ∈ R

where Φ denotes standard normal cumulative density function.

Said differently, if Xi with i = 1, . . . , n iid
(and n is sufficient large), then

X ≈ N

(
µ,
σ2

n

)
with finite µ = E[X1] and σ2 = V ar(X1).
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Remarks:

• The LLN provides a limiting value for the statistic X . In particular, if we
increase the sample size (if we capture more information from the population),
the sample mean converges to the population mean.

• The CLT provides a limiting distribution. Namely X is approximately normal
with the true mean and the true variance of X (provided the number of
summands is large).

• In LLN the condition that the Xi have second moments is superfluous
(this irrelevant condition in LLN only gives a simple proof).

• If this condition (finite second moments) is added to LLN, the conditions of LLN
and CLT are the same.

• When Xi is iid sequence of rvs with finite second moments, LLN and CLT both
apply.
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• However, then CLT tells us more than LLN, since CLT implies LLN.

• Example: Student distribution with 2 degrees of freedom

. Mean exists (equal to 0), but variance does not exist.

. LLN holds, but CLT does not.

• Further generalizations weaken the assumption that the Xi have the same
distribution and apply to linear combinations of independent random variables.
Central limit theorems that weaken the independence assumption and allow the
Xi to be dependent (but not too dependent) are also proved.

• It is impossible to give a concise and definitive statement of how good the
approximation is for finite values of n, but some general guidelines are available.
How fast the approximation becomes good depends on the distribution of the
summands (the Xi).
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PROOF:

• Consider the standardized mean

Un :=
X − E[X1]√
V ar(X1)/n

=
1

σ
√
n

n∑
i=1

(Xi − µ).

• Let Yj = Xj − µ⇒ α1 = 0 and α2 = σ2 for Yj, thus

ϕYj(t) = ϕYj(0) +
ϕ

(1)
Yj

(0)

1!
t +

ϕ
(2)
Yj

(0)

2!
t2 + o(t2) (Taylor)

= 1 +
iα1

1
t +

i2α2

2
t2 + o(t2)

= 1− σ2t2

2
+ o(t2)

with o(t2)
t2

t→0−−→ 0. (negligible rest term)
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• Furthermore

ϕXj−µ
σ
√
n

(t) = ϕYj

(
t

σ
√
n

)
.

⇒ ϕUn(t) =

[
ϕYj

(
t

σ
√
n

)]n
. (independence)

⇒ ϕUn(t) =

[
1− t2

2n
+ o

(
t2

σ2n

)]n
=
[
1 +

cn
n

]n
.

where cn = −t2

2 +
o
(
t2

σ2n

)
1/n

n→∞−−−→ −t2

2

• Hence

ϕUn(t)
n→∞−−−→ e−

t2

2 = ϕN(0,1)(t).

Apply continuity theorem of Lévy-Cramér.
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2.1. Illustrations

1. Consider an iid sample X1, . . . , Xn from an uniform distribution X ∼ U [0, 1],
and consider the sample mean X =

∑n
i=1Xi/n under increasing sample size

n (n→∞). Then

(a) Limiting value: X
P−→ 1/2.

(b) Limiting distribution: X ≈ N
(

1
2,

1
12n

)
.

2. A normal distribution satisfies the LLN and the CLT. For the sample mean of an
iid sample X1, . . . , Xn from a population X ∼ N(µ, σ2) we know that
X ∼ N(µ, σ2/n). Hence

(a) X
P−→ µ, i.e. the LLN is valid.

(b) X satisfies the CLT-distribution exactly.

Visualizations:
https : //www.zoology.ubc.ca/ ∼ whitlock/Kingfisher/CLT.htm
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2.2. Normal approximations to di�erent
non-Gaussian distributions

• The CLT can also be used to derive normal approximations to several
non-Gaussian distributions

• In what follows, we will discuss two well-known distributions, i.e., the χ2

(continuous) and binomial (discrete) distribution.
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1. Normal approximation to a χ2 distribution

THEOREM:

If n is large, then
χ2
n ≈ N(n, 2n).

PROOF:

Given X ∼ χ2
n, thus X = Z2

1 + . . . + Z2
n with the Zi iid N(0, 1). If n is

large, then X = Y1 + . . . + Yn, Yi = Z2
i , is the sum of a large number of

iid variables, and thus approximately normal by the CLT, with its true mean
(n) and true variance (2n).
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2. Normal approximation to a binomial distribution

. Follows directly from the Theorem of De Moivre - Laplace (1733).

. Binomial distribution is sum of n independent Bernoulli rvs:

Y ∼ B(n, p)⇒ Y = X1 + . . . + Xn with Xi ∼ B(1, p).

⇒ E[X1] = p and V ar(X1) = p(1− p).

⇒ E[Y ] = np and V ar(Y ) = np(1− p)

. If n sufficient large,

B(n, p) ≈ N(np, np(1− p)).

Remark:

∗ Approximation is best when p = 0.5 (binomial distribution is symmetric)
Rule of thumb: Approximation is reasonable when np > 5 and
n(1− p) > 5.
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2.3. Continuity Correction

Approximating a discrete distribution with a continuous one has shortcomings:

• P (X ≥ a) and P (X > a) have different values for a discrete distribution, but
will be equal for the continuous approximation.

• Or, P (X = x) > 0 for any integer x that is a possible value of X , this
probability is necessarily 0 under the approximating pdf.

Example:

• X ∼ B(48, 0.25) ≈ Y ∼ N(12, 9)

• P (X ≤ 15) = 0.8768 ≈ P (Y ≤ 15) = 0.8413

• Therefore, to approximate a discrete distribution with a continuous distribution
⇒ Continuity Correction: rounds off integer events to the closest halves.

• P (X ≤ 15) = 0.8768 ≈ P (Y ≤ 15.5) = 0.8783 (better approximation)
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Applying the continuity correction to the normal approximation for the
binomial distribution

Reminder: If n sufficient large, B(n, p) ≈ N(np, np(1− p)).

0 1 2 3 4 5 6

P (Y ≥ a) ≈ 1− Φ

(
a− 0.5− np√
np(1− p)

)
P (Y ≤ b) ≈ Φ

(
b + 0.5− np√
np(1− p)

)
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P (a ≤ Y ≤ b) ≈ Φ

(
b + 0.5− np√
np(1− p)

)
− Φ

(
a− 0.5− np√
np(1− p)

)

0 1 2 3 4 5 6 0 1 2 3 4 5 6

before continuity correction after continuity correction
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2.4. Exercises

Exercise 1:

Suppose a fair coin is tossed 100 times and lands head up 60 times.

1. Write the exact distribution and the approximate normal distribution for the
number of heads in case of a fair coin.

2. The expected number of heads is 50. Should we be surprised with the
experiment, and doubt that the coin is fair?
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Solution exercise 1:

1. Observed rv X : number of heads in 100 tosses.

• Distribution if coin is fair: X ∼ B(n, p), n = 100, p = 0.5

• Mean and variance of X : µ = 50, σ2 = np(1− p) = 25 > 5

• Normal approximation: X ≈ N(µ, σ2) = N(50, 25).

2. Is the observation x = 60 too large compared to the expected value 50? Method
of a typical ’statistical test’: assume the coin is fair, compute the significance
probability (p-value) of the observation, p = P (X ≥ 60), and doubt fairness of
the coin if this probability is too small
(<5% is a common significance level).
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Computation of the prob-value:

• with binomial distribution: p = P (X ≥ 60) = 0.0284

• normal approx. with continuity correction: p = P (X ≥ 59.5) = 0.0287

• normal approx. without continuity correction: p = P (X ≥ 60) = 0.0228

The approximation is improved by the continuity correction.

Test: p < 0.05, we should doubt fairness of the coin.
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Exercise 2:

Define Y as the number of cities out of 50 with mono-nitrogen oxides NOx > 100
and let Y ∼ µg/m3 ∼ B(50, 0.027).

Determine P (Y > 2)

1. exactly

2. approximated using CLT without continuity correction

3. approximated using CLT with continuity correction
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Solution exercise 2:

1.

P (Y > 2) = 1− P (Y ≤ 2)

= 1−(50
0 )0.02700.97350−(50

1 )0.02710.97349−(50
2 )0.02720.97348

= 0.152

2. Y ∼ N(50× 0.027, 50× 0.027× 0.973)

P (Y > 2) = 1− P (Y ≤ 2)

= 1− P (Z ≤ 2− 1.35√
1.314

)

= 1− P (Z ≤ 0.567) = 0.285
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3. Y ∼ N(50× 0.027, 50× 0.027× 0.973)

P (Y > 2) = 1− P (Y ≤ 2)

= 1− P (Z ≤ 2− 0.5− 1.35√
1.314

)

= 1− P (Z ≤ 0.567) = 0.285

• Note that rule of thumb for approximating a binomial distribution by a normal
distribution is actually not satisfied here.

• In this case it might be better to use a Poisson approximation (see next
slides)
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Part 3:

Extra’s
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1. Poisson approximation for binomial
probabilities

THEOREM:

If X1, . . . , Xn are iid random variables with Xi ∼ B(n, pn), then for n→∞ and
pn → 0, such that npn → α with 0 < α <∞, it holds

Xn
D−→ X with X ∼ Poi(α)

Hence
B(n, p) ≈ Poi(np)

Remark:

• ⇒ Typically used when p or 1− p is small (and n is large).
Rule of thumb: n ≥ 30 and np < 5 or nq < 5.
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Binomial distribution

P (X = k) =
n!

k!(n− k!)
pk(1− p)n−k.

Let np = λ, then we obtain

P (X = k) =
n!

k!(n− k!)

(
λ

n

)k(
1− λ

n

)n−k
=
λk

k!

n!

(n− k)!

1

nk

(
1− λ

n

)n(
1− λ

n

)−k
If n→∞

n!

(n− k)!nk
→ 1,

(
1− λ

n

)n
→ e−λ,

λ

n
→ 0,

(
1− λ

n

)−k
→ 1

Hence

P (X = k)→ λke−λ

k!
.
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PROOF (using mgf):

MB(n,pn)(t)
n→∞−−−→MPs(α)(t) (∀ t ∈ R)

Computation :

MB(n,pn)(t) = (qn + pne
t)n

=

(
1 +

(et − 1)npn
n

)n
npn→α−−−−→
n→∞

eα(et − 1) !
= MPs(α)(t)

Using (1 + an
n )n → ea if an → a.
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2. Normal approximation for Poisson
probabilities

THEOREM:

It also holds that

Poi(α) ≈ N(α, α)

Rule of thumb: α > 10

Remark:

• This theorem directly follows from the CLT, since the sum of α independent
Poisson distributions with parameter 1 follows again a Poisson distribution with
parameter α (Proof not shown here).

• Since Poisson is a discrete pdf, the continuity correction can also be applied here.
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3. Exercises

Exercise 1:

Let X ∼ Poi(16).

Calculate P (14 ≤ X ≤ 18) exactly and approximated using normal distribution.
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Solution exercise 1:

X ∼ Poisson(16) ≈ Y ∼ N(16, 16)

p = P (14 ≤ X ≤ 18) = P (X ≤ 18)− P (X < 14) = P (X ≤ 18)− P (X ≤ 13)

• Exact (Poisson distribution): p = 0.4678

• Normal approximation: p = 0.3829

• Normal approximation with continuity correction: p = 0.4680
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Exercise 2:

Suppose that on average 1/3 of the graduated students of the Bachelors Science
bring two extra persons, 1/3 of these students bring one person and 1/3 of these
students bring no one extra to the graduation ceremony. If 600 students will be
attending the ceremony, what is the probability that not more 650 extra persons will
be present?
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Solution exercise 2:

• For a random student it holds that X , the number of extra persons at the
graduation ceremony, has mean µ = 0/3 + 1/3 + 2/3 = 1 and variance
V ar(X) = (0− 1)2/3 + (1− 1)2/3 + (2− 1)2/3 = 2/3.

• The distribution of W , the total number of extra persons at the graduation
ceremony, can be approximated by a normal distribution with mean 600 and
variance 600(2/3) = 400.

• Hence Z = W−600
20 ∼ N(0, 1).

P (W ≤ 650) = P

(
Z ≤ 650.5− 600√

400

)
= P (Z ≤ 2.525) = Φ(2.525) = 0.9942.
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Exercise 3:

Assume that the number of minutes that are needed to serve a customer at the
checkout of a supermarket follows an exponential distribution with parameter 1/3.
Use CLT to calculate the probability that more than 1 hour is needed to serve 16
clients.
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Solution exercise 3:

Assume that the number of minutes that are needed to serve a customer at the
checkout of a supermarket follows an exponential distribution with parameter 1/3.
Use CLT to calculate the probability that more than 1 hour is needed to serve 16
clients.

• Let X1, . . . , X16 be the times to serve the 16 customers.

• Mean and variance of Xi is 3 and 9.

• Let Y =
∑16

i=1Xi be the total time
⇒ Y ≈ N(16 ∗ 3 = 48, 16 ∗ 9 = 144)

P (Y ≥ 60) = 1− P
(
Z ≤ 60− 48√

144

)
= 1− Φ(1) = 0.1587.
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4. Monte-Carlo simulation

DEFINITION:

Monte-Carlo simulation of a parameter θ is an empirical estimation of the
parameter, i.e., θ̂, under repeated sampling.

Often,

• the parameter may be seen as a population mean E(X);

• then the simulated value is the corresponding sample mean X .

Thus,

• the simulated value is justified by the LLN,

• the error on the simulated value is given by the CLT.
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Example: θ = µF
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In what follows, we will discuss two illustrations of the Monte-Carlo simulation:

• Monte-Carlo simulation of a probability

• Monte-Carlo simulation of an integral
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4.1. Monte-Carlo simulation of an
probability

Consider a succes/failure experiment (S/F ) with succes probability p.

Estimate p.

•Method: Do n independent trials, observe the number of successes X , and
estimate p as the sample proportion of successes p̂ = X/n.

• Justification: We give a support for the method, and an estimate for the error
in the result.

p = E(Y ),where Yi outcome of random trial, with value 1 for S and 0 for F

Yi ∼ B(1, p), E(Yi) = p, V ar(Yi) = p(1− p).
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Observations in n trials: Y1, . . . , Yn are iid.

Simulated value from n trials p̂ = X/n = Y .

Then, for n→∞:

p̂
D−→ p, p̂ ≈ N

(
p,
p(1− p)

n

)
Conclusion:

• Monte-Carlo simulation for p: p̂ (n large)

• Error in simulated value: σp̂ =
√

p(1−p)
n

where unknown p is estimated to obtain estimated error sp̂ =
√

p̂(1−p̂)
n
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4.2. Monte-Carlo simulation of an
integral

Simulate definite integral I =
∫ 1

0 g(x) dx when there is no explicit expression for it.

Generate uniform [0,1] random numbers X1, . . . , Xn and compute

Î =

∑
i g(Xi)

n
= g(X)

By the LLN,

Î
D−→ E[g(X)] =

∫ 1

0

g(x) fX(x) dx =

∫ 1

0

g(x) dx = I
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Conclusion:

• Monte-Carlo simulation of I :

I =

∫ 1

0

g(x) dx ≈ Î =

∑
g(Xi)

n

• Error on the estimate:

σÎ =
σg(X)√
n
≈ |g

′(1/2)|√
12n

where variance on g(X) has been estimated using method of approximate
moments, here by linearizing g at E(X) = 1/2 (assuming g′(1/2) 6= 0).
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Example:

Consider the evaluation of

I =
1√
2π

∫ 1

0

e−x
2/2dx.

• From the table of standard normal distribution: I=0.3413.

• Generate 1000 independent uniform rvs X1, . . . , X1000 on [0, 1], then the integral
is approximated by

Î =
1

1000

(
1√
2π

) 1000∑
i=1

e−X
2
i /2

which produced for one realization of the Xi the value 0.3417.
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Part 1:

Statistical estimation problem
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1. Introductory material

Suppose we are given the following setting:

• A population rv under investigation: X

• Data sample: (x1, . . . , xn)

• Sample: (X1, . . . , Xn)

• Sample space: set of possible sample values (x1, . . . , xn)
(in this course: iid samples, unless stated otherwise).
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• The statistical inference problem: make (reliable) statements about the
distribution of X , based on the data.

• The parameter estimation problem: investigate the unknown parameter θ in
population X , based on the data.

Reminder: Parametric estimation

. Assume a parametric model for X , i.e.,
X has density f (x;λ) with model parameter λ.

. We are interesting in investigating parameter θ = g(λ).
Examples:

∗ X ∼ Pois(µ): model parameter µ is investigated parameter θ = µ,

∗ X ∼ N(µ, σ2): model parameter λ = (µ, σ) (parameter vector)
parameter of interest e.g. θ = (µ, σ) or θ = µ or θ = σ/µ or
θ = E(X2) = σ2 + µ2.

Often θ is the full or partial model parameter.
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To derive statistical inference, three groups of procedures are followed

1. Point estimation

⇒ (point) estimator for θ: a statistic (a random variable)

T = T (X1, . . . , Xn)

used to estimate or approximate population parameter θ.

⇒ (point) estimate: numerical value assumed by this statistic when evaluated
for a given sample, hence an observed value (a number)

Tobs = T (x1, . . . , xn)

Example: parameter µ, estimator X , estimate x.
(Note that the estimator is the statistic used to generate the estimate, it is a
random variable, whereas an estimate is a number)

2. Confidence intervals (and confidence regions)

3. Statistical tests
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• Task: Find a good estimator T for θ.

• Question: But what are optimal properties of T such that we can say that T is
a good estimator for θ?
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• Answer: Basic philosophy

Natural requirements for good estima-
tor T = T (X1, . . . , Xn) for parameter θ

Formal statistical concepts on
optimality properties of an estimator

1. T takes values “close” to the true param-
eter value θ with high probability

• Unbiased estimator
• Min variance unbiased estimator
• Mean squared error

2. For large samples, T should be almost per-
fect estimator: if n→∞,
• T converges to θ
• T converges to θ as fast as possible

Asymptotic properties:
• Consistent estimator
• Asymptotic MSE
• Asymptotic relative efficiency

3. T should absorb all information on θ that
is available in the sample

• Sufficient estimator

• In what follows, we will explain these formal statistical concepts!
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Part 2:

Bias, variance and mean squared error
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1. De�nitions

Let T = T (X1, . . . , Xn) be an estimator for θ.

1. • T is an unbiased estimator for θ if E(T ) = θ

True value of the parameter
0

0.05

0.1

0.15

0.2

0.25

 

 

unbiased

biased

• The bias of estimator T for θ is E(T )− θ

• T is asymptotically unbiased if E(T )→ θ as n→∞
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2. If T and T0 are two unbiased estimators, then T is more efficient than T0 for θ
if

V ar(T ) ≤ V ar(T0) .

True value of the parameter
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

Estimator with smaller variance

Estimator with larger variance

3. The relative efficiency of two unbiased estimators T and T0 for θ is

eff (T, T0; θ) = V ar(T0)
V ar(T )
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4. The mean squared error (MSE) of estimator T for θ is

MSE(T ; θ) = E[(T − θ)2] = V ar(T ) + [E(T )− θ]2

MSE = Variance + Bias2

Thus, the MSE of an unbiased estimator is the variance of the estimator.

5. Let T and T0 be two estimators for a parameter θ, then T is more efficient
than T0 to estimate θ if

MSE (T ; θ) ≤ MSE (T0; θ)
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2. Exercises on sample statistics

Reminder: Given iid sample X1, . . . , Xn from population X .

Parameter Corresponding sample statistic

µ = E(X) X =
∑
Xi
n

σ2 = E[(X − µ)2] V 2 =
∑

(Xi−µ)2

n

S̃2 =
∑

(Xi−X)2

n , S2 =
∑

(Xi−X)2

n−1 = n
n−1S̃

2

αk = E(Xk) ak =
∑
Xk
i

n

µk = E[(X − µ)k] bk =
∑

(Xi−µ)k

n , mk =
∑

(Xi−X)k

n
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Exercise 1:

Is S̃2 = 1
n

∑n
i=1(Xi −X)2 an unbiased estimator for σ2?

Solution exercise 1:

E(S̃2) = E

(
1

n

n∑
i=1

(Xi −X)2

)
=

1

n
E

(
n∑
i=1

(X2
i − 2XiX + X

2
)

)

=
1

n
E

(
n∑
i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

)

=
1

n

(
n∑
i=1

E(X2
i )− nE(X

2
)

)
=

n

n
E(X2

1)− n

n
E(X

2
)

(*)
= (σ2 + µ2)− (

σ2

n
+ µ2) =

n− 1

n
σ2 ⇒ Biased

(*) Since σ2 = E(X2
1)− µ2, V ar(X) = σ2

n , and E(X) = µ ⇒ E(X
2
) = σ2

n + µ2.
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Exercise 2:

Let X1, . . . , Xn be sample from X , with X ∼ N(µ, σ2). Assume that µ is known
and σ2 is unknown. What is MSE of V 2 = 1

n

∑n
i=1(Xi − µ)2 (for estimating σ2)?

Solution exercise 2:

V 2 is unbiased estimator since

E(V 2) =
1

n

n∑
i=1

E
[
(Xi − µ)2

]
=

1

n

n∑
i=1

V ar(Xi) = σ2

Since X ∼ N(µ, σ2), we know that
(
X−µ
σ

)2

∼ χ2
1.

Therefore

MSE(V 2) = V ar(V 2) =
1

n2

∑
V ar

[
(X1 − µ)2

]
=

1

n
V ar

[
(X1 − µ)2

]
=
σ4

n
V ar

[(
X1 − µ
σ

)2
]

=
2σ4

n
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Exercise 3:

Given the sample variances S̃2 and S2 based on an iid sample X1, . . . , Xn from a

normal population X ∼ N(µ, σ2). Then we know already T = (n−1)S2

σ2 ∼ χ2
n−1

Find the variance of S2 and S̃2.

Solution exercise 3:

S2 =
σ2

n− 1
T where T ∼ χ2

n−1 ⇒ V ar(T ) = 2(n− 1).

Thus,

V ar(S2) =
σ4

(n− 1)2
V ar(T ) =

2

(n− 1)
σ4

V ar(S̃2) = V ar

(
n− 1

n
S2

)
=

(n− 1)2

n2
V ar(S2) =

2(n− 1)

n2
σ4
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3. Best estimator

To find the best estimator T for θ, we prefer an unbiased one with minimum
variance, i.e., most efficient of all unbiased estimators.

This estimator is called the minimum-variance unbiased estimator (MVUE).

Definition:

• T is MVUE (minimum variance unbiased estimator) for θ if

(i) E(T ) = θ

(ii) V ar(T ) ≤ V ar(S) for any unbiased estimator S for θ
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We can restrict this class even further to the best linear unbiased estimator
(BLUE).

Definition:

• T is a BLUE (best linear unbiased estimator) for θ if

(i) E(T ) = θ and T is a linear estimator, i.e. of the form

T (X1, . . . , Xn) =

n∑
i=1

ciXi

where ci ∈ R for i = 1, . . . , n.

(ii) V ar(T ) ≤ V ar(S) for any unbiased and linear estimator S for θ
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3.1. Existence of minimum-variance
unbiased estimator (MVUE)

• Sometimes, there may not exist any MVUE for a given scenario or set of data

• This can happen in two ways:

1. No existence of unbiased estimators

2. Even if we have unbiased estimators, e.g., θ̂1, θ̂2 and θ̂3 for θ, none of them
gives uniform minimum variance.
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3.2. Methods to �nd minimum-variance
unbiased estimator (MVUE)

There exists methods to find the MVUE:

1. Determine Cramér-Rao Lower Bound (CRLB) and check if some unbiased
estimator satisfies it.

If an unbiased estimator exists whose variance equals the CRLB for each value of
θ, then it must be the MVUE estimator. It may happen that no estimator exists
that achieve CRLB.

Details about this bound can be found in Section 5.5.
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2. Use the Rao-Blackwell-Lechman-Scheffe (RBLS) theorem:

Find a sufficient statistic and find a function of the sufficient statistic.
This function gives the MVUE.

• Remark: This approach is rarely used in practice.

3. Restrict the solution to find linear estimators that are unbiased. This gives the
BLUE.

• Remark: This method gives the MVUE only if the problem is truly linear.
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Part 3:

Asymptotic properties
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1. Introduction

• When studying the quality of estimators, it is also of interest to look at what
happens with the estimators when the sample size n increases and in limit goes
to infinity (asymptotic properties).

• In what follows, we will introduce and discuss the terms consistency and
asymptotic normality.
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2. Consistency

Denote by Tn = T (X1, . . . , Xn) the sequence of rvs (T1, T2, . . .) for which we would
like to study its behavior when n→∞.

DEFINITION:

The sequence of estimators Tn for θ is said to be consistent if

Tn
P→ θ as n→∞

This means that
∀ε > 0 : lim

n→∞
P (|Tn − θ| > ε) = 0

Intuitively, this means that the distribution of the estimator will be more and more
concentrated around the true parameter θ as n increases.
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• Question: Is there a relationship between consistency and unbiasedness? Is
every consistent estimator also unbiased and/or is every unbiased estimator also
consistent?

• Answer: Illustration
Let X1, X2, . . . be normal iid sample (Xi ∼ N(µ, σ2)) and X ∼ N(µ, σ2)

1. Take Tn = X1 as estimator for E(X).

• E(Tn) = E(X1) = µ
⇒ unbiased.

• But X1 will not converge in probability to E(X)
⇒ not consistent.

2. Take Tn = 1
n

∑n
i=1Xi + 1

n.

• E(Tn) = E(Xn + 1
n) = µ + 1

n
⇒ biased.

• Tn
P→ E(X) + 0

⇒ consistent.
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2.1. Consistency on sample statistics

Reminder: Given iid sample X1, . . . , Xn from population X .

Parameter Corresponding sample statistic

µ = E(X) X =
∑
Xi
n

σ2 = E[(X − µ)2] V 2 =
∑

(Xi−µ)2

n

S̃2 =
∑

(Xi−X)2

n , S2 =
∑

(Xi−X)2

n−1 = n
n−1S̃

2

αk = E(Xk) ak =
∑
Xk
i

n

µk = E[(X − µ)k] bk =
∑

(Xi−µ)k

n , mk =
∑

(Xi−X)k

n
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THEOREM:

Given iid sample X1, . . . , Xn from population X . Then, as n→∞:

1. X
P−→ µ

2. V 2 P−→ σ2

3. S̃2 P−→ σ2, S2 P−→ σ2, S
P−→ σ

4. ak
P−→ αk

5. mk
P−→ µk
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PROOF:

Rely essentially on basic limit theorems, convergence transformation theorems and
moment-expansions.

1. Follows directly from the LLN.

2. Asymptotic value of V 2 =
∑

(Xi − µ)2/n = Y

• Define Y = (X − µ)2, Yi = (Xi − µ)2.

• Then Yi are iid sample from Y and we can apply the LLN.

• LLN: V 2 = Y
P−→ E(Y ) = σ2
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3. Asymptotic value of S̃2

• Using SS lemma: S̃2 = V 2 − (X − µ)2

• First term on the right converges to σ2

• Second term converges to zero since X
P−→ µ

• Then, convergence transformation theorem finishes the proof.

Asymptotic value of S2

• In S2 = n
n−1S̃

2, the first factor goes to 1, the second to σ2, and convergence
transformation theorem finishes the proof.
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Asymptotic value of S

• Use S2 P−→ σ2 and the transformation theorem with g(x) =
√
x

4. Asymptotic value for ak

• Proofs are similar to those for S2 (ak is in structure as Y )

5. Asymptotic value for mk

• In the lemma mk is written as a polynomial in the aj (j = 1, . . . , k), which,
by multiple use of convergence transformation theorems, converges to the
same polynomial in the αj , and this polynomial is µk .
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3. Asymptotic normality

DEFINITION:

An estimator Tn is asymptotically normal (distributed) (AN) if there exist a
σ > 0 such that for n→∞

Tn − θ
σ/
√
n

D−→ N(0, 1)

where σ2 is the asymptotic variance of the sequence of rvs
√
nTn. We also write

this as

Tn ∼ AN(θ,
σ2

n
)
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3.1. Transformation of asymptotic normal
estimators

• Suppose that we are interested in estimating g(θ), where Tn be an estimator for θ

• An obvious estimator for g(θ) is g(Tn).

• Question: But what can we say about the asymptotic normality result for the
estimator g(Tn) for g(θ), given that we have the asymptotic normality result for
Tn?
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• Answer: Delta method

THEOREM:

Suppose that Tn is an AN estimator for θ

Tn − θ
σ/
√
n

D−→ N(0, 1).

If g : R→ R : x→ g(x) is function, differentiable at x = θ, with g′(θ) 6= 0,
then

g(Tn)− g(θ)

|g′(θ)σ| /
√
n

D−→ N(0, 1)
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3.2. Asymptotic normality on sample
statistics

Reminder: Given iid sample X1, . . . , Xn from population X .

Parameter Corresponding sample statistic

µ = E(X) X =
∑
Xi
n

σ2 = E[(X − µ)2] V 2 =
∑

(Xi−µ)2

n

S̃2 =
∑

(Xi−X)2

n , S2 =
∑

(Xi−X)2

n−1 = n
n−1S̃

2

αk = E(Xk) ak =
∑
Xk
i

n

µk = E[(X − µ)k] bk =
∑

(Xi−µ)k

n , mk =
∑

(Xi−X)k

n
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THEOREM:

Given iid sample X1, . . . , Xn from population X .

1. Z = X−µ
σ/
√
n

D−→ N(0, 1) or X ∼ AN
(
µ, σ

2

n

)
2. T = X−µ

S/
√
n

D−→ N(0, 1)

3. V 2, S̃2, S2, each is AN
(
σ2, 1

n(µ4 − σ4)
)

4. ak ∼ AN
(
αk,

1
n(α2k − α2

k)
)

5. mk ∼ AN
(
µk,

1
n(µ2k − µ2

k − 2kµk−1µk+1 + k2µ2µ
2
k−1)

)
For each statement the highest order population moment under consideration should
exist (i.e. should be finite), e.g. for the AN of S̃2 the fourth moment α4 should exist.
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PROOF:

1. Follows directly from the CLT.

2. T converges to N(0, 1)

• T = X−µ
S/
√
n

= X−µ
σ/
√
n
/ S

σ

D−→ N(0, 1)/1 ∼ N(0, 1).
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3. Asymptotic normality of V 2 =
∑

(Xi − µ)2/n = Y

• Define Y = (X − µ)2, Yi = (Xi − µ)2.

• Then Yi are iid sample from Y and we can apply the CLT.

• CLT: V 2 = Y ∼ AN(E(Y ), V ar(Y )/n )

. E(Y ) = σ2

. V ar(Y ) = E(Y 2)− [E(Y )]2 = µ4 − σ4.
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Asymptotic normality of S̃2

Verificative proof (Constructive proof is based on convergence of random
vectors).

• We need to show that
√
n(S̃2−σ2)√
µ4−σ4

D−→ N(0, 1).

• Using SS lemma:
√
n(S̃2 − σ2)√
µ4 − σ4

=

√
n(V 2 − σ2)√
µ4 − σ4

−
√
n(X − µ)2√
µ4 − σ4

• Since V 2 is AN, the first term on the right converges to N(0, 1).

• Hence it is sufficient to show that second term goes to 0, i.e.√
n(X − µ)2 D−→ 0, or to show

Y := n1/4(X − µ)
D−→ 0

• Check that E(Y ) = 0, V ar(Y ) = σ2/
√
n→ 0 and use Chebyshev’s corollary.
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Asymptotic normality of S2

• Note that S2 = n
n−1 S̃

2 where S̃2 is AN.

• Check general lemma: if Yn ∼ AN(µ, σ2
n) then so is n

n−1Yn = (1 + 1
n−1)Yn,

provided (n− 1)σn →∞.

• Therefore n/(n−1)Yn−µ
σn

= Yn−µ
σn

+ 1
(n−1)σn

Yn
D−→ N(0, 1), by use of

convergence transformation theorem and since (n− 1)σn →∞.

• Finally the rv S̃2 satisfies the condition (n− 1)σn →∞.
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4. Asymptotic normality for ak

• Proofs are similar to those for S2 (ak is in structure as Y ).

5. Asymptotic normality for mk

• The proof for the AN of mk requires a theory of convergence of random
vectors, which is outside the scope of this course.
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Part 4:

Sufficient estimator
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1. Introduction

• Just like we want our estimators to be consistent and efficient, we also want
them to be sufficient.

• To intuitively explain this principle, an example will be used

Example:

• Suppose we have iid samples x = (x1, . . . , xn) from a known distribution with
unknown parameter θ.

• Imagine we have two people:

• Statistician A: Knows the entire sample, gets n quantities:
x = (x1, . . . , xn).

• Statistician B: Knows T (x1, . . . , xn) = t, a single number which is a
function of the samples. For example, the sum or the maximum of the
samples.

c© Martial Luyts 40



• Heuristically, T (x1, . . . , xn) is a sufficient statistic if Statistician B can do
just as good a job as Statistician A, given less information.

• For example, if the samples are from the Bernoulli distribution, knowing
T (x1, . . . , xn) =

∑n
i=1 xi (the number of heads) is just as good as

knowing all the individual outcomes, since a good estimate would be the
number of heads over the number of total trials! Hence, we dont actually
care the ORDER of the outcomes, just how many heads occurred!
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2. Formal de�nition

DEFINITION:

Let X = (X1, . . . , Xn) be sample from distribution with parameter θ ∈ Θ (possibly
more dimensional parameter). A statistic T = T (X1, . . . , Xn) is a sufficient
statistic for θ if the conditional distribution of X1, . . . , Xn given T = t and θ does
not depend on θ, i.e.,

P (X1 = x1, . . . , Xn = xn | T = t, θ) = P (X1 = x1, . . . , Xn = xn | T = t)
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Our example:

• Reminder: Statistician A has all the samples x1, . . . , xn but statistician B only
has the single number t = T (x1, . . . , xn).

• The idea is, Statistician B only knows T = t, but since T is sufficient, doesn’t
need θ to generate new samples X ′1, . . . , X

′
n from the distribution.

• This is because P (X1 = x1, . . . , Xn = xn | T = t, θ) =
P (X1 = x1, . . . , Xn = xn | T = t) and since he/she knows T = t, he/she knows
the conditional distribution (can generate samples)!

• Now Statistician B has n iid samples from the distribution, just like Statistician
A. So using these samples X ′1, . . . , X

′
n, statistician B can do just a good a job as

statistician A with samples X1, . . . , Xn (on average). So no one is at any
disadvantage.
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3. Neyman-Fisher Factorization Criterion

• Problem: The formal definition is often hard to check in practice.

• It turns out that there is a criterion that helps us determine whether a
statistic is sufficient.

• This criterion is called the Neyman-Fisher Factorization Criterion
(NFFC)!

DEFINITION:

Let X1, . . . , Xn be iid rvs with pdf fX(x; θ). A statistic T = T (X1, . . . , Xn) is
sufficient for θ if and only if there exist non-negative functions g and h such that
the joint pdf fX(X1, . . . , Xn; θ) factorizes as follows:

fX(X1, . . . , Xn; θ) = g(X1, . . . , Xn) · h(T (X1, . . . , Xn); θ)
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i.e., the joint pdf can be split into a product of two terms: the first term g can
depend on the entire data, but not θ, and the second term h can depend on θ,
but only on the data thorugh the sufficient statistic T . In other words, T is the
only thing that allows X1, . . . , Xn and θ to interact!

• Remark: We call the joint pdf fX(X1, . . . , Xn; θ) also the likelihood of the
data, often written as L(θ | X1, . . . , Xn).

• Since X1, . . . , Xn be iid rvs with pdf fX(x; θ) here, we have:

L(θ | X1, . . . , Xn) =
∏n

i=1 fX(xi; θ)

• Property: The formal definition on slide 42 & NFFC are equivalent!

• Proof is not given here.
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4. Examples

Exercise 1:

Let x1, . . . , xn be iid random samples from Unif (0, θ). Show that
T (x1, . . . , xn) = max{x1, . . . , xn} is a sufficient statistic.

Solution exercise 1:

L(θ | x1, . . . , xn) =

n∏
i=1

1

θ
I{xi≤θ} =

1

θn
I{x1,...,xn≤θ} =

1

θn
I{max{x1,...,xn}≤θ} =

1

θn
I{T (x1,...,xn)≤θ}

Choose g(x1, . . . , xn) = 1 and h(T (x1, . . . , xn); θ) = 1
θnI{T (x1,...,xn)≤θ}.
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Exercise 2:

Let x1, . . . , xn be iid random samples from Poi(θ). Show that
T (x1, . . . , xn) =

∑n
i=1 xi is a sufficient statistic.

Solution exercise 2:

L(θ | x1, . . . , xn) =

n∏
i=1

e−θ
θxi

xi!
=
e−nθ · θ

∑n
i=1 xi∏n

i=1 xi!
=

1∏n
i=1 xi!

· e−nθ · θT (x1,...,xn)

Choose g(x1, . . . , xn) = 1∏n
i=1 xi!

and h(T (x1, . . . , xn); θ) = e−nθ · θT (x1,...,xn).
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Exercise 3:

Let x1, . . . , xn be iid random samples from Bern(θ). Show that
T (x1, . . . , xn) =

∑n
i=1 xi is a sufficient statistic.

Solution exercise 3:

L(θ | x1, . . . , xn) =

n∏
i=1

θxi·(1−θ)1−xi = θ
∑n
i=1 xi·(1−θ)n−

∑n
i=1 xi = θT (x1,...,xn)·(1−θ)n−T (x1,...,xn)

Choose g(x1, . . . , xn) = 1 and h(T (x1, . . . , xn); θ) = θT (x1,...,xn) · (1− θ)n−T (x1,...,xn).
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Part 5:

Maximum likelihood estimator
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1. Introduction

• In statistics, maximum likelihood estimation (MLE) is the most important
and widespread method of parameter estimation.

• Reason: MLE generally provides a more efficient estimator for the unknown
parameter θ than other estimation techniques.

• Generally, a maximum likelihood estimator (MLER) is the value of θ that
maximizes the likelihood function L(·).

• Often, it is mathematically easier to maximize the log-likelihood function instead
of the likelihood function.

• Property: Since the log function is monotonic increasing, maximizing
log-likelihood is equivalent to maximizing likelihood.
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• For simple examples, it is possible to find an explicit closed form for the MLER.

• With more complex models, there is no explicit formula and hence one must
write program that computes log-likelihood and then use optimization software
to maximize this function numerically.

• If data are independent, then the likelihood is the product of its marginal
densities.
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2. Terminology

Assume rv X with density fX(x, θ) with parameter θ.

Given data sample x = (x1, . . . , xn).

1. The likelihood (function) of parameter θ for the observation x is

L(θ | X1, . . . , Xn) = fX1,...,Xn(x1, ..., xn) =

n∏
i=1

fX(xi; θ)

2. The log-likelihood:

l(θ | X1, . . . , Xn) = log [L(θ | X1, . . . , Xn)] =

n∑
i=1

log [fX(xi; θ)]

3. The maximum likelihood estimate (MLEr) for θ is the estimate
θ̂ML = T (x1, ..., xn) . The maximum likelihood estimator (MLER) is then
θ̂ML = T (X1, ..., Xn).
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3. Concept through example

• Given a set of observations x1, ..., xn of a random sample X1, ..., Xn originating
from a parametric model {f (x; θ) | θ ∈ {θ1, θ2, θ3}︸ ︷︷ ︸

Θ

} with unknown parameter θ.

• Aim: Estimate the parameter θ, based on the observed data x1, . . . , xn.
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• To do so, MLE tries to determine the parameter θ for which the observed data
have the highest joint probability, i.e., for which the probability of obtaining the
observed data is a maximum.

• To examine the joint probability at the observed data sample, MLE makes use of
the likelihood function L(θ | X1, . . . , Xn)

• Goal of MLE: Find the value of the model parameter θ that maximize
L(θ | X1, . . . , Xn) over the parameter space Θ, i.e.,

θ̂ML = argmaxθ∈Θ={θ1,θ2,θ3} {L(θ | X1, . . . , Xn)}

• In the graph above, data are less likely under θ1, and are absolutely unlikely
under θ3. The highest probability of observing our data here is under θ2.

• Thus, θ̂ML = θ2
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• Examples: Θ = N (left) & Θ = R (right)

• Procedure for finding the maxima:

• Calculate the first derivate of l(θ | X1, . . . , Xn) w.r.t. θ, i.e.,
Dθl(θ | X1, . . . , Xn).

• Solve the equation Dθl(θ | X1, . . . , Xn) = 0 to θ.

• Check for maximum (second derivative < 0).
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4. Large sample properties of MLE

Under appropriate smoothness conditions on the pdf

1. The ML estimator from an iid sample is consistent:

θ̂ML
P−→ θ.

2. The ML estimator is asymptotically normal:

θ̂ML
D−→ AN

(
θ,

1

In(θ)

)
.

I(θ) is called the Fisher information about θ in single observation X , given by

I(θ) = E
{

[Dθlogf (X ; θ)]2
}

= E
[
D2
θlogf (X ; θ)

]
= V ar [Dθlogf (X ; θ)]

Fisher Information In(θ) for sample (X1, . . . , Xn) equals n times the information
in a single observation: In(θ) = n · I(θ)
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3. The multiparameter case: If θ = (θ1, . . . , θk) is a k-dimensional parameter, then
the vector of ML estimators is still asymptotically normal:

θ̂ML
D−→ ANk

(
θ,

1

n
· I−1(θ)

)
,

where I(θ) is the Fisher information matrix for a single observation, defined as a
(k x k) matrix

I(θ) =
[
Iij(θ)

]
i=1,...,k;j=1,...,k

,

Iij(θ) = E
{

[Dθilogf (X ; θ)]
[
Dθjlogf (X ; θ)

]}
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5. Fisher information & Cram�er-Rao
variance bound

• Question: Does there exist a lower bound for the variance of an unbiased
estimator T for θ?

• Answer: Cramér-Rao Lower Bound (CRLB)

THEOREM:

Under suitable regularity conditions (outside the scope of this course), any
unbiased estimator T for parameter θ has variance

V ar(T ) ≥ 1

In(θ)

The right side, i.e., 1
In(θ), is called the Cramér-Rao Lower Bound (CRLB)

for an unbiased estimator.
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DEFINITION:

An unbiased estimator with variance equal to the CRLB is called an efficient
estimator (and is the MVUE estimator; Section 3.2).

• Property: A ML estimator is an asymptotically efficient estimator.
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6. Examples

Exercise 1:

Assume that X1, . . . , Xn are iid Bernoulli distributed rvs with unknown parameter
θ = p. Find the MLER and its asymptotic distribution for θ.

Solution exercise 1:

1. For any observed values x1, . . . , xn (each xi is 0 or 1), the likelihood and
log-likelihood function are given by

L(p) =

n∏
i=1

pxi(1− p)1−xi,

`(p) =

n∑
i=1

[xi log p + (1− xi) log(1− p)]

= log p

n∑
i=1

xi + log(1− p)(n−
n∑
i=1

xi).
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Hence we get

Dp`(p) =

∑n
i=1 xi
p

− n−
∑n

i=1 xi
1− p

= 0⇒ p̂ =

∑n
i=1 xi
n

.

This is indeed maximum (check!) and thus the MLER of p is p̂ = X̄ .

2. Information about p in a single observation X ∼ B(1, p):

D2
p`(p) = −

(
X

p2
+

1−X
(1− p)2

)
⇒ I(p) =

1

p
+

1

1− p
=

1

p(1− p)
.

3. Asymptotic distribution: p̂ ∼ AN(p, p(1−p)n ).
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Exercise 2:

Assume that X1, . . . , Xn are iid Poisson distributed rvs with unknown parameter
θ = λ. Find the MLER and its asymptotic distribution for θ.

Solution exercise 2:

1. The log-likelihood (for observed values x1, . . . , xn) is given by

`(λ) =

n∑
i=1

(xi log λ− λ− log xi!) = log λ

n∑
i=1

xi − nλ−
n∑
i=1

log xi!.

Setting the 1st derivative of log-likelihood equal to zero gives us

Dλ`(λ) =
1

λ

n∑
i=1

xi − n = 0⇒ λ̂ =

∑n
i=1 xi
n

.
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Check that 2nd derivative is negative! Thus, the MLER of λ is λ̂ = X̄ .

2. Information about λ in a single observation:

I(λ) = E
[
−D2

λ log f (X, θ)
]

= E

[
−
(
−X
λ2

)]
=
λ

λ2
=

1

λ
.

3. Asymptotic distribution: λ̂ ∼ AN
(
λ, λn
)

.
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Exercise 3:

Assume normal distributed data

fX(x;µ) =
1√
2πσ

e
−(x−µ)2

2σ2 .

Determine the CRLB for the unbiased estimator µ̂ for µ.

Solution exercise 3:

log fX(x;µ) = −(x− µ)2

2σ2
− log(σ)− 1

2
log(2π)

∂

∂µ
log fX(x;µ) =

x− µ
σ2
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Hence

I(µ) = E

[(
X − µ
σ2

)2
]

=
1

σ4
E
[
(X − µ)2

]
=

1

σ2

Therefore, any unbiased estimate µ̂ of µ satisfies

E[µ̂] = µ and V ar[µ̂] ≥ σ2

n
.

Since E(X) = µ and V ar(X) = σ2

n , the sample mean X is the MVUE estimator for
the population mean under the Gaussian population.
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Part 1:

Confidence Intervals
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1. Introductory material

• Until now, we discussed properties and methods for deriving a (good) estimator
θ̂ = T for an unknown parameter θ.

• Question: Can we add more information to an estimator θ̂?

• Answer: Yes, confidence intervals!

• We can find an interval (TL, TU) that we think has high probability of
containing θ.

• The length of such an interval gives us an idea of how closely we can estimate
θ.
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• Principle: From point estimation to set estimation

1. First, we derive the MLEr for a parameter θ, i.e., the most plausible
parameter value after observations x have been made.

2. Then, confidence intervals are (commonly) used in conjunction with point
estimates to convey information about the uncertainty of the estimates.

• A confidence interval for a population parameter θ is a random interval,
calculated from the sample, that contains θ with some specified confidence.

• Example: A 95% confidence interval for θ:
If we were to take many random samples and calculate confidence interval
for each sample, about 95% of these intervals would contain θ.
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2. De�nition

DEFINITION:

Let X = (X1, ..., Xn) be iid sample from distribution with parameter θ and let α be
number with 0 < α < 1.

1. A 100(1− α)% confidence interval (CI) for parameter θ is a random interval
TL ≤ θ ≤ TU , where the confidence limits TL = TL (X) and TU = TU (X) are
statistics such that the covering probability equals 1− α, i.e.,

P (TL ≤ θ ≤ TU) = 1− α.

• TL and TU are respectively the lower confidence limit and the upper
confidence limit.

2. The corresponding observed confidence interval based on the data x =
(x1, ..., xn) is the numerical interval [TL(x), TU(x)].
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3. Interpretation

• A choice of α = 5% gives a 95% confidence interval

• Under long run repeated sampling, about 95% of the observed confidence
intervals will cover the true parameter θ, and about 5% will not cover the true
parameter θ.

• One way to think of the random interval (TL, TU) is to imagine that the sample
that we observed is one of many possible samples that we could have observed.
Each such sample would allow us to compute an observed interval. Prior to
observing the samples, we would expect 95% of the intervals to contain θ. Even
if we observed many such intervals, we won’t know which ones contain θ and
which ones don’t.

• Useful visualisation: https://rpsychologist.com/d3/ci/
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4. Construction procedure

Assume we wish to construct a CI for parameter θ with confidence level 1− α, given
sample X = (X1, ..., Xn).

Procedure:

1. Find an estimator for θ, e.g., the ML estimator θ̂ML.
Obtain an associated test statistic (pivotal statistic): statistic T (X; θ) with
distribution independent of θ.

2. Choose interval [cL, cU ] for T (X; θ) with covering probability 1− α, i.e.,

P (cL ≤ T (X; θ) ≤ cU) = 1− α.
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3. Solve for parameter θ:

P (TL ≤ θ ≤ TU) = 1− α.

4. (1− α) confidence interval for θ is

TL ≤ θ ≤ TU .

Therefore, the key steps in the construction of a CI are:

1. The choice of statistic T (and/or estimator of θ);

2. The choice of limits cL and cU .
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In what follows, we show how to construct a 100(1− α)% two-sided CI for:

1. Normal mean under KNOWN variance

2. Normal mean under UNKNOWN variance

3. Normal variance

4. Proportion

5. Difference of 2 independent means µ1 − µ2

6. Difference of 2 dependent means µ1 − µ2

7. Ratio of two variances
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4.1 CI for normal mean under known
variance

Given iid sample X1, . . . , Xn from a normal population X ∼ N(µ, σ2) with known
variance.

Aim: Find a two-sided 100(1− α)% CI for the mean µ.

Procedure:

1. Estimator for µ: X

CLT: X ∼ N(µ, σ2
X
), σX =

σ√
n

2. Test statistic:

Z =
X − µ
σX

∼ N(0, 1)
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3. (1− α) probability region: Choose Z-interval symmetric around zero, then

P (−z ≤ Z ≤ z) = 1− α⇔ P

(
−z ≤ X − µ

σX
≤ z

)
= 1− α,

where z = zα/2 is α/2 upper quantile of standard normal distribution.
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4. Solve inequality for parameter µ:

P (X − z · σX ≤ µ ≤ X + z · σX) = 1− α.

5. (1− α) confidence interval for µ is given by

X − zα/2 ·
σ√
n
≤ µ ≤ X + zα/2 ·

σ√
n

This CI is also written as[
X − zα/2 ·

σ√
n
;X + zα/2 ·

σ√
n

]
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4.2 CI for normal mean under unknown
variance

Given iid sample X1, . . . , Xn from a normal population X ∼ N(µ, σ2) with
unknown variance.

Aim: Find a two-sided 100(1− α)% CI for the mean µ.

Procedure:

1. Since σ2 is not known, we will estimate this by the unbiased sample variance
S2 =

∑n
i=1(Xi −X)2/(n− 1)

2. Estimator for µ: X

3. Test statistic:

T =
X − µ
S/
√
n
∼ tn−1.
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4. (1− α) probability region:

P (−t ≤ T ≤ t) = 1− α P

(
−t ≤ X − µ

s/
√
n
≤ t

)
= 1− α

where t = tn−1,α/2 is α/2 upper quantile of tn−1-distribution.
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5. Solve inequality for parameter µ:

P (X − t · s/
√
n ≤ µ ≤ X + t · s/

√
n) = 1− α.

6. (1− α) confidence interval for µ is given by

X − tn−1,α/2 ·
s√
n
≤ µ ≤ X + tn−1,α/2 ·

s√
n

This CI is also written as[
X − tn−1,α/2 ·

s√
n
;X + tn−1,α/2 ·

s√
n

]
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4.3 CI for normal variance

Given iid sample X1, . . . , Xn from a normal population X ∼ N(µ, σ2) with
unknown µ and σ2.

Aim: Find a two-sided 100(1− α)% CI for the variance σ2.

Procedure:

1. Estimator for σ2:

S2 =

n∑
i=1

(Xi −X)2/(n− 1).

2. Test statistic:
(n− 1)S2

σ2
∼ χ2

n−1.
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3. (1− α) probability region:

P

(
χ2
1−α/2,n−1 ≤

(n− 1)S2

σ2
≤ χ2

α/2,n−1

)
= 1− α

where χ2
1−α/2,n−1 and χ2

α/2,n−1 are α/2 lower and upper quantile of

χ2
n−1-distribution.
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4. Solve inequality for parameter σ2:

P

(
(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

)
= 1− α.

5. (1− α) confidence interval for σ2 is given by[
(n− 1)S2

χ2
α/2,n−1

,
(n− 1)S2

χ2
1−α/2,n−1

]
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4.4 CI for proportion

Given iid sample X1, . . . , Xn from a population X ∼ B(1, p) with unknown
parameter p.

Aim: Find a two-sided 100(1− α)% CI for the proportion p.

Procedure:

1. Estimator for p:

p̂ =
1

n

n∑
i=1

Xi = X.

2. Test statistic:

• Exact: nX ∼ B(n, p)

• Approximate (based on CLT): X ≈ N(p, p(1−p)n )
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3. (1− α) probability region (based on CLT):

X − p√
p(1−p)
n

∼ N(0, 1)⇒ P

−z ≤ X − p√
p(1−p)
n

≤ z

 ≈ 1− α.

4. Since the variance depends on the unknown p, two routes can be followed:

• Approximate variance[
p̂− z

√
p̂(1− p̂)

n
, p̂ + z

√
p̂(1− p̂)

n

]
• Maximize variance [

p̂− z
√

1

4n
, p̂ + z

√
1

4n

]
Remark: These CI’s are based on approximations!
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4.5 CI for di�erence of 2 independent
means

SITUATION 1:

Given iid samples of size n1 and n2 from normal populations with σ1 and σ2
known.

Aim: Find a two-sided 100(1− α)% CI for the mean µ1 − µ2.

Procedure:

1. Estimator for µ1 − µ2: X1 −X2

2. Test statistic:

X1 −X2 ∼ N(µ1 − µ2,
σ21
n1

+
σ22
n2

)
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3. (1− α) probability region:

P

−z ≤ (X1 −X2)− (µ1 − µ2)√
σ21
n1
+

σ22
n2

≤ z

 = 1− α,

where z = zα/2 is α/2 upper quantile of standard normal distribution.
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4. Solve inequality:

P

(X1 −X2)− z

√
σ21
n1

+
σ22
n2
≤ µ1 − µ2 ≤ (X1 −X2) + z

√
σ21
n1

+
σ22
n2

 = 1−α.

5. (1− α) confidence interval for µ1 − µ2 is given by(X1 −X2)− z

√
σ21
n1

+
σ22
n2

; (X1 −X2) + z

√
σ21
n1

+
σ22
n2


Special case: When σ1 = σ2 = σ:[

(X1 −X2)− zσ
√

1

n1
+

1

n2
; (X1 −X2) + zσ

√
1

n1
+

1

n2

]
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SITUATION 2:

Given iid samples of size n1 and n2 from normal populations with σ = σ1 = σ2
unknown.

Aim: Find a two-sided 100(1− α)% CI for the mean µ1 − µ2.

Procedure:

1. Estimator for µ1 − µ2: X1 −X2
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2. Test statistic:

We know that

(n1 − 1)S2
1

σ2
∼ χ2

n1−1 and
(n2 − 1)S2

2

σ2
∼ χ2

n2−1.

Since S2
1 and S2

2 are independent,

(n1 − 1)S2
1 + (n2 − 1)S2

2

σ2
∼ χ2

n1+n2−2.

Problem: σ2 is not known!

c© Martial Luyts 25



Hence, we make use of a pooled estimator S2
p for σ2

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
,

which is unbiased and based on all available observations.

PROOF:

E(S2
p) =

(n1 − 1)E(S2
1) + (n2 − 1)E(S2

2)

n1 + n2 − 2
= σ2

(n1 − 1) + (n2 − 1)

n1 + n2 − 2
= σ2.

Thus, rewritten, we have that

(n1 + n2 − 2)S2
p

σ2
∼ χ2

n1+n2−2
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It can be proven that

X1 −X2 − (µ1 − µ2)

Sp
√

1
n1
+ 1

n2

∼ tn1+n2−2.

PROOF:

X1 −X2 − (µ1 − µ2)

Sp
√

1
n1
+ 1

n2

=

X1−X2−(µ1−µ2)
σ
√

1
n1

+ 1
n2√

S2p
σ2

=

X1−X2−(µ1−µ2)
σ
√

1
n1

+ 1
n2√[

(n1−1)S21+(n2−1)S22
σ2

]
/(n1 + n2 − 2)

∼ N(0, 1)√
χ2
n1+n2−2/(n1 + n2 − 2)

= tn1+n2−2
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3. (1− α) probability region:

P

−t ≤ X1 −X2 − (µ1 − µ2)

Sp
√

1
n1
+ 1

n2

≤ t

 = 1− α

where t = tn1+n2−2,α/2 is α/2 upper quantile of tn1+n2−2-distribution.
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4. Solve inequality for parameter µ1 − µ2, we get the following (1− α) confidence
interval for µ1 − µ2:[
(X1 −X2)− tn1+n2−2;α/2Sp

√
1

n1
+

1

n2
; (X1 −X2) + tn1+n2−2;α/2Sp

√
1

n1
+

1

n2

]
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SITUATION 3:

Given iid samples of size n1 and n2 from normal populations with σ1 6= σ2
unknown.

Aim: Find a two-sided 100(1− α)% CI for the mean µ1 − µ2.

We call this the Behrens-Fisher problem.

Procedure:

1. We replace σ1 and σ2 by values of sample standard deviations S1 and S2 and
proceed as Situation 2 (exercise).
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2. A (1− α) confidence interval for µ1 − µ2:(X1 −X2)− tν;α/2

√
S2
1

n1
+
S2
2

n2
; (X1 −X2) + tν;α/2Sp

√
S2
1

n1
+
S2
2

n2

 ,
where ν is calculated as

ν =

(
S21
n1

+
S22
n2

)2
(S21/n1)

2

n1−1
+
(S22/n2)

2

n2−1

.
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4.6 CI for ratio of 2 variances

Given iid samples of size n1 and n2 from normal populations with standard deviation
σ1 and σ2, respectively.

Aim: Find a two-sided 100(1− α)% CI for the ratio
σ21
σ22

.

Procedure:

1. Estimator for
σ21
σ22

:

S2
1

S2
2

2. Test statistic:

F =
S2
1

S2
2

/
σ21
σ22
∼ Fn1−1,n2−1
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3. (1− α) probability region:

P

(
Fn1−1,n2−1,1−α/2 ≤

S2
1

S2
2

/
σ21
σ22
≤ Fn1−1,n2−1,α/2

)
≈ 1− α.

Remark: Fn1−1,n2−1,1−α/2 =
1

Fn2−1,n1−1,α/2
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4. Solve inequality:

P

(
S2
1

S2
2

· 1

Fn1−1,n2−1,α/2
≤ σ21
σ22
≤ S2

1

S2
2

· Fn2−1,n1−1,α/2
)

= 1− α.

5. (1− α) confidence interval for
σ21
σ22

is given by[
S2
1

S2
2

· 1

Fn1−1,n2−1,α/2
;
S2
1

S2
2

· Fn2−1,n1−1,α/2
]
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4.7 CI for paired data

• In Section 4.5, we considered CI’s for comparing means of two populations based
on independent samples from each.

• In many experiments, the samples are paired rather than independent.

. Repeated observations on same sampling unit, e.g. weighting the same
individual before and after participating in weight-loss program.

. In medical experiment, we might pair subjects who are of same gender and
have similar weight and age (e.g. twins) and then one member is randomly
assigned to treatment group and the other to control group.
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• Pairing can be an effective experimental technique that can control for
extraneous sources of variability.

. Compare the mean parking speed for two different kind of cars
⇒ let same person park both types of cars.

• Because pairing samples makes the observations within each pair dependent, we
can not use the methods that were previously developed to compare populations
based on independent samples from each.

• The analysis of a matched-pairs experiment uses the n paired differences and
inferences regarding the differences in the means are made by making inferences
regarding the mean of the differences.
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Assume that the differences Di = Xi − Yi are a sample from normal distribution
(number of observations in group X and Y are equal: n = n1 = n2), i.e.,

Di ∼ N(µD, σ
2
D),

µD = E(Di) = µX − µY ,
σ2D = V ar(Di) = σ2X + σ2Y − 2 · Cov(X, Y ).

In general, Cov(X, Y ) and hence σD is unknown.
⇒ inferences will be based on

t =
D − µD
sD

∼ tn−1.

Therefore, a 100(1− α)% CI for µD is

[
D − tn−1,α/2 · sD;D + tn−1,α/2 · sD

]
.
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Part 2:

Summary

c© Martial Luyts 38



case statistic (1− α)100% confidence interval

µ

X σ2 Z = X−µ
σX
∼ N(0, 1) µ = X ± zα/2 σX

known

n σX = σ/
√
n

o

r

m σ2 T = X−µ
SX
∼ tn−1 µ = X ± tn−1;α/2 SX

a unknown

l SX = S/
√
n
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µ1 − µ2

X σ21, σ
2
2 Z = (X−Y )−(µ1−µ2)

σX−Y
∼ N(0, 1) µ1 − µ2 = (X − Y )± zα/2 σX−Y

Y known

σ2
X−Y = σ21/n1 + σ22/n2

n

o

r σ21 = σ22 T = (X−Y )−(µ1−µ2)
SX−Y

∼ tn1+n2−2 µ1 − µ2 = (X − Y )± tν;α/2 SX−Y
m unknown

a S2
X−Y = S2

p(1/n1 + 1/n2)

l

S2
p =

∑
(Xi−X)2+

∑
(Yi−Y )2

n1+n2−2 ν = n1 + n2 − 2

σ21, σ
2
2 T = (X−Y )−(µ1−µ2)

SX−Y
∼ tν µ1 − µ2 = (X − Y )± tν;α/2 SX−Y

unknown,

possibly S2
X−Y = S2

1/n1 + S2
2/n2

unequal

ν ≈ (S2
1/n1+S

2
2/n2)

2

(S2
1/n1)

2

n1−1 +
(S2

2/n2)
2

n2−1
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µD = µ1 − µ2

Non-independent samples T = D−µD

SD
∼ tn−1 µ1 − µ2 = D ± tn−1;α/2 SD

paired obs (Xi, Yi),

D = X − Y ∼ N SD = SD/
√
n

p X ∼ B(1, p), q = 1− p, q̂ = 1− p̂

np̂ ≥ 5;nq̂ ≥ 5 Z = p̂−p
sp̂
≈ N(0, 1) p = p̂± zα/2 Sp̂

(np ≥ 5;nq ≥ 5) sp̂ =
√
p̂q̂/n

p1 − p2 X ∼ b(p1), Y ∼ b(p2), qi = 1− pi, q̂i = 1− p̂i

nip̂iq̂i ≥ 5 Z = (p̂1−p̂2)−(p1−p2)
Sp̂1−p̂2

≈ N(0, 1) p1 − p2 = (p̂1 − p̂2)± zα/2 Sp̂1−p̂2

(i = 1, 2) S2
p̂1−p̂2 = p̂1q̂1/n1 + p̂2q̂2/n2

The construction of the CI for p1 − p2 is not given in the slides, but it is similar to that for µ1 − µ2 (and it is

expected that you are able to do this).
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σ2 X normal

µ χ2 = nv2

σ2 =
∑

(Xi−µ)2
σ2 ∼ χ2

n
nv2

cR
≤ σ2 ≤ nv2

cL

known

cR = χ2
n;α/2, cL = χ2

n;1−α/2

µ χ2 = (n−1)S2

σ2 =
∑

(Xi−X)2

σ2 ∼ χ2
n−1

(n−1)S2

cR
≤ σ2 ≤ (n−1)S2

cL

unknown

cR = χ2
n−1;α/2, cL = χ2

n−1;1−α/2

σ21/σ
2
2 X, Y normal

µ1, µ2 F = v21/v
2
2

σ2
1/σ

2
2
∼ Fn1,n2

1
fR

v21
v22
≤ σ2

1

σ2
2
≤ 1

fL

v21
v22

known

fR = Fn1,n2;α/2, fL = Fn1,n2;1−α/2

µ1, µ2 F = S2
1/S

2
2

σ2
1/σ

2
2
∼ Fn1−1,n2−1

1
fR

S2
1

S2
2
≤ σ2

1

σ2
2
≤ 1

fL

S2
1

S2
2

unknown

fR = Fn1−1,n2−1;α/2, fL = Fn1−1,n2−1;1−α/2
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Part 3:

Examples
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1. Exercises

Exercise 1:

Assume a random sample of size n = 20 from a normal population with variance
σ2 = 225 and mean X = 64.3. Construct a two-sided 95% CI for population mean
µ.

Solution exercise 1:

1. Since z0.25 = 1.96: [
64.3− 1.96 · 15√

20
, 64.3 + 1.96 · 15√

20

]
which reduces to

[57.7, 70.9]
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Exercise 2:

Paint manufacturer wants to determine the average drying time of a new interior
wall paint. If for 12 test areas of equal size he obtained a mean drying time of 66.3
minutes and standard deviation of 8.4 minutes, construct a 95% CI for the true
mean.

Solution exercise 2:

1. t0.025,11 = 2.201 gives us[
66.3− 2.201 · 8.4√

12
, 66.3 + 2.201 · 8.4√

12

]
or [61.0, 71.6]
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Exercise 3:

In 16 test runs the gasoline consumption of an experimental engine had a standard
deviation of 2.2 gallons. Construct 99% CI for σ2, measuring the true variablility of
the gasoline consumption of this engine. Assume that the gasoline consumption of
this engine follows a normal distribution.

Solution exercise 3:

1. χ2
0.005,15 = 32.801 and χ2

0.995,15 = 4.601 gives us a CI for the σ2:[
15(2.2)2

32.801
,
15(2.2)2

4.601

]
⇒ CI for σ is [1.49, 3.97] (because of monotonic transformation).

c© Martial Luyts 46



Exercise 4:

A doctor takes a sample of 400 students and it is found that 140 of them are
smokers. Find a 95% CI for the proportion of smoking students.

Solution exercise 4:

1. Substituting p̂ = 140
400 = 0.35 and z = 1.96 leads to the following (approximated)

CI for p: [
0.35± 1.96

√
(0.35)(0.65)

400

]
or [0.30, 0.40]
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Exercise 5:

Construct a 95% CI for the actual difference between the average lifetimes of 2 kinds
of light bulbs, given that a random sample of 40 light bulbs of one kind lasted on
the average 418 hours of continuous use and 50 light bulbs of another kind lasted on
the average 402 hours. Population standard deviations are known to be σ1 = 26 and
σ2 = 22.

Solution exercise 5:

1. Since z=1.96, the 95% CI for µ1 − µ2 is[
(418− 402)− 1.96 ·

√
262

40
+
222

50
, (418− 402) + 1.96 ·

√
262

40
+
222

50

]
= [5.90, 26.10]
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Exercise 6:

To measure the effect of a certain type of diet 10 overweight volunteers were
enlisted for a small scale pilot study. Their weight was measured before and after six
months of dieting. The researcher gives you the following results.

ni No diet Diet

1 85 82

2 87 84

3 88 89

4 90 84

5 92 88

6 87 87

7 85 86

8 89 84

9 93 89

10 84 82

Construct a 95% CI for the weight difference before and after six months of dieting.
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Solution exercise 6:
ni No diet Diet Difference

1 85 82 3

2 87 84 3

3 88 89 -1

4 90 84 6

5 92 88 4

6 87 87 0

7 85 86 -1

8 89 84 5

9 93 89 4

10 84 82 2

We find D = 2.5, SD = 2.460804, hence[
D ± t9,0.975

SD√
10

]
=

[
2.5± 2.262 ∗ 2.460804√

10

]
= [0.7398, 4.2602]
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Exercise 7:

You are asked to compare the amount of wine in bottles of two different
manufactures. You sample 5 bottles of wine of each type, where we assume that the
amount of wine of each type comes from normal populations. Construct a 95% CI
for the actual difference between the average amount of wine of each type.

ni A B

1 755 756

2 753 755

3 754 754

4 752 754

5 755 756
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Solution exercise 7:

1. For type A, you find xA = 753.8 ml and for type B you find xB = 755. The
standard deviations of both samples are respectively 1.30384 and 1.

2. First, we check whether σA = σB.

F0 =
S2
A

S2
B

∼ f (nA − 1, nB − 1), f0 =
1.303842

12
= 1.69999

f4,4,0.025 =
1

f4,4,0.975
= 0.10411, f4,4,0.975 = 9.60453

CI :

[
S2
A

S2
B

f4,4,0.025,
S2
A

S2
B

f4,4,0.975

]
= [0.176986, 16.3276]

Since 1 is inside this CI, we assume that σA = σB.
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3. Thus, a 95% CI for the actual difference between the average amount of wine of
each type is given by

[
755.3− 752.75− 2.021 · Sp

√
1

nA
+

1

nB
, 755.3− 752.75 + 2.021 · Sp

√
1

nA
+

1

nB

]

=

2.55± 2.021 ·

√
(nA − 1) · S2

1 + (nB − 1) · S2
2

nA + nB − 2
·
√

1

5
+
1

5


= [1.169553, 3.930447]

c© Martial Luyts 53



Fundamental Concepts of Statistics

Chapter 8: Hypothesis testing

Martial Luyts & Clement Cerovecki

Catholic University of Leuven, Belgium

martial.luyts@kuleuven.be



Contents

1. Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introductory material . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Null and alternative hypothesis . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2. Test statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3. Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Types of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



1.3.1. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.2. Sample size calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4 Hypothesis testing versus confidence intervals . . . . . . . . . 43

2. Different tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1. Classical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.1. Test statistic for two proportions . . . . . . . . . . . . . . . . . . . . . . 54

2.1.2. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 MLE based tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3. Likelihood ratio tests . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4. Tests for categorical data . . . . . . . . . . . . . . . . . . . . . 75

c© Martial Luyts ii



2.4.1. Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4.2. Testing for homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.3. Testing for homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 88

c© Martial Luyts iii



Part 1:

Hypothesis testing
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1. Introductory material

• Objective of statistics is to make inferences about unknown population
parameters based on information contained in sample data.

These inferences are phrased as

. estimates of the respective parameters

. tests of hypotheses about their values.
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• Hypothesis tests are constructed in all fields in which theory can be tested
against observation:

. A medical researcher may hypothesize that a new drug is more
effective than another in combating a disease.

. A quality control engineer may hypothesize that new assembly method
produces only 5% defects.

. An educator may claim that two methods of teaching are equally effective.

. A political candidate may claim that a plurality of voters favor his election.

All such hypotheses can be subjected to statistical verification by using observed
sample data.
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2. Example

Example (from the medical/economic field): Tampa Bay area survey

• The Tampa Bay area is a major populated area surrounding Tampa Bay on the
west coast of Florida, US
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• A survey was conducted on the Tampa Bay health managers (HMs), with
primary goal to investigate the cost effectiveness of these HMs

• Research questions:

• Who are the Tampa Bay HMs?

• What is the cost effectiveness of the HMs?
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• The (overall) mean of average monthly cost per patient in the US is $130.

• Research question: Is the mean cost for family practitioner (fp) different than
$130?

The procedure to decide whether there is sufficient evidence to believe the mean
cost for family practitioner is different than $130 is called test of hypothesis!

To make a conclusion, we will make use of the Tampa Bay area survey, i.e., the
observed sample data.
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2.1 Null and alternative hypothesis

• In practice, the research question is formulated in terms of a null hypothesis
H0 and an alternative hypothesis Ha:

H0 : µfp = 130 Ha : µfp 6= 130

• Based on our observed data, we will investigate whether H0 can be rejected in
favour of Ha

• If not, the null hypothesis H0 is accepted, i.e., fail to reject H0, and one decides
that the mean cost for family practitioner is not different than $130.

• Question: But how do we choose/formulate the null (and alternative)
hypotheses?
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• Answer: The choice typically depends on reasons of custom and convenience.

• It is conventional to choose the simpler of two hypotheses as the null, e.g.,

H0 : The distribution is Poisson Ha : The distribution is not Poisson

• Consequences of incorrectly rejecting one hypothesis may be graver than
those of incorrectly rejecting the other. The former should be chosen as the
null, e.g.,

H0 : new drug gives same result Ha : new drug is superior

• Null hypothesis is often a simple explanation that must be discredited in order
to demonstrate the presence of some physical phenomenon or effect. (This
must be conclusively disproved in order to convince skeptic that Ha is true.)
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• Accepting H0 (i.e., fail to reject H0) is a weak conclusion, whereas accepting
Ha is a strong conclusion.

Basic strategy in statistics is:

Be conservative for H0 (let H0 get the advantage of the doubt), and
reject the null distribution H0 if it is no good explanation for the
observations X (or better for the observed sample summarized in the
sufficient statistic X), that is if the observation X becomes too unlikely
under the null distribution.
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2.2 Test statistic

• Intuitively, it is obvious that H0 : µfp = 130 will be rejected if the observed
sample average x̄ is too far away from 130.

• Tampa Bay area survey: n = 50, x̄ = 121.06, s2 = 83.53

• Question: But what is too far away?

• If this result is very unlikely to happen by pure chance

• Said differently, if this result is not at all what you expect to see if µfp = 130
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• The CLT will help us in deciding, as it describes what values for x̄ are to be
expected if one would repeatedly draw new samples. If n is sufficiently large, we
know that:

• Here, we are interested in knowing what values for x̄ could be expected if
µfp = 130
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• When σ2 is unknown, we will base ourself on

T = X̄−130√
S2
n

H0∼ tdf=n−1

• In hypothesis testing, T is called a test statistic

• In statistics, several test statistics exist, depending on the defined
hypothesis (see Section 5)

• T can be calculated for our given sample, defined as the sample value (t)

• t = 121.06−130
1.29 = −6.92
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• To reject H0, the red area needs to be sufficiently low

• In statistics, the red area is defined as the P-value

• P-value = Probability that, if H0 is true, the test statistic is as
extreme as or more extreme than the sample value
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• Depending on the hypothesis, different locations are given for this value

• H0 : µ = µ0 Ha : µ 6= µ0

• H0 : µ = µ0 Ha : µ > µ0

• H0 : µ = µ0 Ha : µ < µ0
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• Question: But what is sufficiently low?

• One therefore specifies the so-called level of significance α

• α = Probability that, if H0 is true, the test statistic is not able to
detect this

• This means that the confidence level (1− α) defines the probability that, if
H0 is true, the test is able to detect this

• In research, one often use 1%, 5% of 10% for α
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2.3 Decision making

• Decision (based on the P-value):

• Accept H0 if P ≥ α

• Reject H0 if P < α
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• Decision (based on the sample value):

• Accept H0 if t ≤ tcrit

• Reject H0 if t > tcrit

• Remark: The critical value (tcrit), of course, depends on the chosen α.
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• Question: But where can we find this critical value tcrit?

• Answer: Tables
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2.4 Exercises

Exercise 1:

Actual production of bulbs has lifetimes with mean 830h and variance (40h)2

(assume that the lifetimes follow a normal distribution). A new production will be
started if it gives bulbs with a higher lifetime. To investigate whether the new
production will be started or not, a random sample of size 10 is taken, with
measures n = 10, X̄ = 845, s = 40. Should the new production be started?

Solution exercise 1:

1. Variable X : lifetime of random bulb in new production.

2. Parameter of interest: µ.

3. Consider significance level α = 5%.
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4. Hypothesis testing:

H0 : µ ≤ 830 Ha : µ > 830

5. Intuitive test: Reject H0 if X̄ is too large.

6. Test statistic: Z = X̄−µ0
σ/
√
n

H0∼ N(0, 1).

7. Sample value: z = 845−830
40/
√

10
= 1.186.

8. P-value: p = P (Z ≥ z | H0 true) = 0.118 > α.

9. Conclusion: Accept H0 (reject Ha), i.e., keep the old production.
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The argument can be phrased as follows:

• Data are consistent with null hypothesis, for they are quite likely under the null
distribution: Under mean lifetime 830 an observed mean as extreme as the
observed 845 will occur in somewhat 11.8% (about 1 in 8) of the samples.

• Data do not provide evidence against the null hypothesis.

• Difference can be explained by random fluctuation: Due to variation in lifetimes
(σ = 40) such a difference is quite likely.
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3. Types of errors

Reality

H0 correct H0 not correct

Test result
H0 correct OK Type II error

H0 not correct Type I error OK

• Type I error:

• Occurs if H0 is correct but the test leads to a significant result

• Question: What is the chance that this occurs?

• Suppose the test is performed at α = 5%

• If H0 is correct, then one will observe a significant result in 5% of the cases
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• Thus, P(Type I error) = α

• Type II error:

• Occurs if H0 is incorrect but the test has not detected this

• Question: What is the chance that this occurs?

• In contrast to the type I error, the probability of making a type II error is not
easily controlled, and depends on various aspects of the sample(s) and
population(s), and is denoted by β

• The power of a statistical test is 1− β, the probability of correctly rejecting
H0
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• Be aware: β can not be explicitly computed because ’H0 is not true’ gives
us no information about unknown parameter of interest, unless a specific
alternative value is given, for example, Ha : µ = µ1 6= µ0.

Example: Tampa Bay area survey

P (type II error|µ = µ1) = P (accept H0|µ = µ1 true)

= P

(
−tn−1,α2

≤ X̄ − µ0

S/
√
n
≤ tn−1,α2

| µ = µ1

)
for µ = µ1 it holds that T = X̄−µ1

S/
√
n
∼ tn−1 hence

= P

(
−tn−1,α2

− µ1 − µ0

S/
√
n
≤ X̄ − µ1

S/
√
n
≤ tn−1,α2

− µ1 − µ0

S/
√
n
|µ = µ1

)
= P

(
−tn−1,α2

− µ1 − µ0

S/
√
n
≤ T ≤ tn−1,α2

− µ1 − µ0

S/
√
n

)
• This gives rise to power analysis!
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3.1 Power

• In general, a specific testing procedure is acceptable, only if:

• The chance of making a type I error is sufficiently small;

• The power to detect deviations from H0 is sufficiently large.

• The first condition can easily be met by specifying α sufficiently small.

• The second condition is more difficult to meet, as the power depends on various
aspects of the sample(s) and population(s).

• In what follows, this will be illustrated in the context of the comparison of 2
independent groups.
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SETTING:

• The null and alternative hypotheses are given by

H0 : µ1 = µ2 Ha : µ1 6= µ2.

• In the case Ha is true, i.e., µ1 6= µ2, we denote the true difference between
populations by ∆ = µ1 − µ2.

• Assume the data to be normally distributed in both populations, with equal
variability σ2.
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• Graphically:
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3.1.1 Power as a function of the significance level α

The smaller α, the smaller the power

• Intuitively: Type I errors are less likely if the null hypothesis is rejected less
often. However, in cases where H0 is truly wrong, it will still be rejected less
often.

3.1.2 Power as a function of the sample size(s)

The more observations, the larger the power

• Intuitively: More observations yields more information about the population(s),
therefore implying more precision in the conclusions.
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3.1.3 Power as a function of the true difference ∆

The smaller ∆, the smaller the power

• Intuitively: Large deviations from the null hypothesis are easier to detect
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3.1.4 Power as a function of the variability σ2

The smaller σ2, the larger the power

• Intuitively: Large deviations from the null hypothesis are easier to detect
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• The power depends on various aspects:

• The significance level α;

• The true difference ∆ between the populations;

• Within-group variance σ2;

• The sample size(s).

• Visualization: http : //rpsychologist.com/d3/nhst/

• In what follows, we will illustrate power calculation with some examples.
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Exercise 1:

Reconsider the bulb lifetime problem, i.e.,

• Variable X : Lifetime of random bulb in new production;

• X ∼ N(µ, σ2), with σ = 40;

• Observed data: n = 10, X̄ = 845;

• Hypothesis testing:

H0 : µ ≤ 830(= µ0) Ha : µ > 830

A researcher considers following test: Reject H0 if X̄ > 842(= c).

Find the significance level of this test and its power for alternative µ = 850(= µ1).
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Solution exercise 1:

From CLT:

X ∼ N

(
µ,

402

10

)
∼ N(µ, 12.652).

Significance level of the test:

α = P (reject H0|H0 true) = P (X > 842|µ = 830) = 0.171.

Interpretation:

• If the new production is not better, the test will nevertheless conclude in 17,1%
of the samples that it is better.
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Power of the test for the alternative µ = 850:

β∗(850) = P (reject H0|H1 with µ = 850) = P (X > 842|µ = 850) = 0.736

Interpretation:

• If the new production is better (µ = 850), then the test will detect it in 73.6% of
the samples.
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Exercise 2:

Medical researchers are interested in investigating the effect of medical drug on
increasing iron level in blood of teenage girls. They have gathered the following
information:

• Variable X : Increases in iron level (in µg/dL);

• X ∼ N(µ, σ2), with σ = 40;

• Observed data: n = 20, X̄ = 18;

• Hypothesis testing:

H0 : µ ≤ 0 Ha : µ > 0

• Significance level: α = 5%

Calculate the power at alternative µ = 20.
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Solution exercise 2:

From CLT:

X ∼ N

(
µ,

402

20

)
∼ N(µ, 8.942).

Critical value (= c) at α = 5%:

α = P (reject H0|H0 true) = P (X > c | µ = 0) = 0.05.

⇔
c

8.942
= 1.645⇒ c = 14.7

Power of the test for the alternative µ = 20:

β∗(20) = P (reject H0|H1 with µ = 20) = P (X > 14.7|µ = 20) = 0.723

Interpretation:

• If the drug has effect µ = 20, then about 72% of the samples will show effect in
the test.
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3.2 Sample size calculation

• Remark: In power analysis, the sample size is the only aspect under control of
the investigator.

• In practice, e.g., clinical trials, one can calculate the sample size needed to reach
a sufficiently high power, leading to so-called sample size calculations, i.e., a
specific part of power analysis.

• To conduct this sample size,

• The level of significance needs to be chosen apriori;

• The within-group variance σ2 needs to be pre-specified based on earlier,
similar experiments, relevant literature, or a pilot study

• In practice, ∆ is not known. Instead, the smallest ∆ which would still be
practically relevant to detect, needs to be specified.
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SETTING:

• Assume the following null and alternative hypotheses:

H0 : µ ≤ µ0 Ha : µ > µ0.

• Let X ∼ N(µ, σ2), with σ known;

• Test statistic: Z = X̄−µ0
σ/
√
n

H0∼ N(0, 1).

• Significance level α
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PROCEDURE:

• Find the rejection region for H0: Reject H0 if X̄ > µ0 + zα · σ√
n

, where zα is

α−upper quantile of standard normal distribution.

• Construct the power of the test at µ1:

β∗(µ1) = P

(
Z > zα −

µ1 − µ0

σ/
√
n

)
, where Z ∼ N(0, 1)

.
• Find sample size n such that the power at µ1 is at least a level β∗:

β∗(µ1) ≥ β∗ ⇔ zα −
µ1 − µ0

σ/
√
n
≤ zβ∗

n ≥
[

σ
µ1−µ0

· (zα − zβ∗)
]2

• Remark: A similar approach can be obtained for other hypothesis testing!
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Exercise 3:

Concentration of chemical in preparation is assumed to be 20 units. However, the
medium may have been interchanged with previous preparation of concentration 24.
Experimenter plans to check for concentration 20. He will

• measure concentration a number of times, n.

• observe X

• perform a classical statistical z-test:
Reject concentration µ0 = 20 if

X > µ0 + zα ·
σ√
n
,

where zα is α−upper quantile of standard normal distribution.

Assume measuring method has standard deviation σ = 3.

How many measurements should be performed in order that the test has a type I
error probability of at most 5% and a power of at least 90% to detect the ’wild’
concentration 24?
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Solution exercise 3:

n ≥
[

3

24− 20
(1.6449 + 1.2816)

]2

= 4.8 or n = 5.
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4. Hypothesis testing versus con�dence
intervals

• For the Tampa Bay area doctors survey, we have drawn conclusions about
the population average cost per patient per month

• H0 : µfp = 130 & Ha : µfp 6= 130 → p < 0.00001

• 95% C.I.: [44.51; 82.98]

• We know from the C.I. that the average average cost is likely to be between
44.51 and 82.98, excluding 130

• The significance test has rejected the value 130 as possible value for µfp

• So, both procedures agree!
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• Question: But does this always agree?

• Answer: Yes, provided the levels of significance and confidence are
complementary to each other, e.g.,

• Accept H0 (p ≥ α = 0.05:)

• Reject H0 (p < α = 0.05:)
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THEOREM:

Consider a parameter θ and a statistic T = T (X) for θ. Then a (1− α) confidence
interval for θ is the set of acceptable null hypotheses at level α. (Simple null
hypothesis against the total alternative.)

PROOF:

Case of normal mean & two-sides hypothesis testing (general case is similar):

X ∼ N(µ, σ2), with σ known, and hypothesis H0 : µ = µ0 and Ha : µ 6= µ0.
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• Test statistic: Z = X̄−µ0
σ/
√
n

H0∼ N(0, 1)

• Conclusion: Reject H0 if X̄ > µ0 + zα/2 · σ√
n

or X̄ < µ0 − zα/2 · σ√
n

Accept H0 ⇔ µ0 − zα/2 · σ√
n
≤ X̄ ≤ µ0 + zα/2 · σ√

n

⇔ X̄ − zα/2 · σ√
n
≤ µ0 ≤ X̄ + zα/2 · σ√

n

⇔ µ0 belongs to the (1− α)100% C.I. for µ
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Part 2:

Different tests
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1. Classical tests

• In practice, hypothesis testing is done for means, proportions and variances,
leading to a different set of test statistics.

• In what follows, we will give an overview of some classical tests for these
situations.

• Remark: The construction of hypothesis test is similar to the construction of
corresponding C.I., but here we derive the distribution of the test statistic under
the null hypothesis.
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Hypothesis Assumptions Test statistic and distribution under H0

TEST FOR ONE MEAN µ

H0 : µ = µ0 Normal population z-test

known variance σ2 Z =
X − µ0
σ/
√
n
∼ N(0, 1)

Normal population t-test

unknown variance T =
X − µ0
S/
√
n
∼ tn−1

General population z-test (approx.)1

large sample (CLT) Z =
X − µ0
S/
√
n
≈ N(0, 1)

1 If n→∞: tn−1 ≈ N(0, 1)
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Hypothesis Assumptions Test statistic and distribution under H0

TEST FOR TWO MEANS GIVEN INDEPENDENT SAMPLES µ1 and µ2

H0 : µ1 = µ2 Normal populations z-test

known variances Z =
X − Y√
σ2
1

n1
+ σ2

2

n2

∼ N(0, 1)

Normal populations t-test

unknown variances T =
X − Y

Sp

√
1
n1

+ 1
n2

∼ tn1+n2−2

σ21 = σ22 S2
p = (n1−1)S2

1+(n2−1)S2
2

n1+n2−2

Normal populations t-test

unknown variances T =
X − Y√
S2
1

n1
+ S2

2

n2

≈ tν

σ21 6= σ22 ν ≈ (s21/n1 + s22/n2)
2

(s21/n1)
2

n1−1 + (s22/n2)
2

n2−1
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Hypothesis Assumptions Test statistic and distribution under H0

TEST FOR TWO MEANS GIVEN PAIRED DATA µ1 and µ2

H0 : µ1 = µ2 Test for equal means µ1, µ2 t-test

for paired data (Xi, Yi). T =
D

SD/
√
n
∼ tn−1

equivalently Difference data Di = Xi − Yi. D =
∑
Di

n = X − Y

Test for mean 0 S2
D =

∑
(Di−D)2

n−1

H0 : µD = 0 D normally distributed
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Hypothesis Assumptions Test statistic and distribution under H0

TEST FOR ONE PROPORTION p

H0 : p = p0 Observed proportion in z-test (approx.)

binomial sample: Z =
P̂ − p0
SE(P̂ )

≈ N(0, 1)

P̂ =
∑
Xi/n SE(P̂ ) =

√
p0(1−p0)

n

TEST FOR TWO PROPORTIONS p1 and p2

H0 : p1 = p2 Comparison of proportions p1, p2 z-test (approx.)2

in 2 independent samples. Z =
P̂1 − P̂2

ŜE(P̂1 − P̂2)
≈ N(0, 1)

Observed proportions ŜE(P̂1 − P̂2) =
√
P̂ (1− P̂ )( 1

n1
+ 1

n2
)

P̂1 =
∑
X1i/n1, P̂2 =

∑
X2i/n2 P̂ =

∑
X1i +

∑
X2i

n1 + n2
=
n1P̂1 + n2P̂2

n1 + n2

2 See Section 5.1
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Hypothesis Assumptions Test statistic and distribution under H0

TEST FOR A VARIANCE σ2

H0 : σ2 = σ20 Normal population χ2 test

χ2 = (n− 1)
S2

σ20
∼ χ2

n−1

TEST FOR TWO VARIANCES σ21 and σ22

H0 : σ21 = σ22
Independent normal
populations

F-test

F =
S2
1

S2
2

∼ Fn1−1,n2−1
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1.1 Test statistic for two proportions

Let H0 : p1 = p2 and assume p = p1 = p2.

Denote Q1 and Q2 respectively the number of successes in group 1 and 2 (with
sample size n1 and n2).

Q1 ∼ B(n1, p) ≈ N(n1p, n1p(1− p))⇒ p̂1 =
Q1

n1
∼ N

(
p,
p(1− p)

n1

)
Q2 ∼ B(n2, p) ≈ N(n2p, n2p(1− p))⇒ p̂2 =

Q2

n2
∼ N

(
p,
p(1− p)

n2

)
Thus,

p̂1 − p̂2 ≈ N

(
0,
p(1− p)

n1
+
p(1− p)

n2

)
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Z =
p̂1 − p̂2√

p(1− p)
[

1
n1

+ 1
n2

] ≈ N(0, 1)

Since p is unknown, this needs to be estimated: p̂ = Q1+Q2
n1+n2

= n1p̂1+n2p̂2
n1+n2
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1.2 Exercises

Exercise 1:

An experiment was performed to compare the abrasive wear of two different
laminated materials. Twelve pieces of material 1 were tested by exposing each piece
to a machine measuring wear. Ten pieces of material 2 were similarly tested. In each
case, the depth of wear was observed. The samples of material 1 gave an average
wear of 85 units with a sample standard deviation of 4, while the samples of material
2 gave an average of 81 and a sample standard deviation of 5.

Can we conclude at the 0.05 significance level that the two unknown population
variances differ?
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Solution exercise 1:

Let σ2
1 and σ2 respectively be the population variances for the abrasive wear of

material 1 and material 2.

• H0 : σ2
1 = σ2

2 versus Ha : σ2
1 6= σ2

2.

• f =
s2

1

s2
2

with v1 = 11 and v2 = 9.

• Critical region (α = 005): F11,9,0.975 = 3.91 and F11,9,0.025 = 1
F9,11,0.975

= 0.28.

⇒ H0 rejected when f < 0.28 or f > 3.91.

• Sample value: fobs = 16
25 = 0.64.

Conclusion: Do not reject H0. There is insufficient evidence that variances differ.
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Exercise 2:

We want to measure the yield of a chemical process according to the used catalytic
converter (A or B). A sample of 5 products using A resulted in a sample mean of
20.84 and sample standard deviance of 7.246, whereas a sample of 6 products using
B resulted in a sample mean of 22.53 and sample standard deviance of 5.432.

Are the yields different on a significance level α = 0.05?
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Solution exercise 2:

• H0 : µA = µB versus Ha : µA 6= µB.

• Test the ratio of the variances:

f =
52.50

29.10
= 1.78 ∈

[
1

F5,4,0.975
, F4,5,0.975

]
= [1/9.63, 7.39]

⇒ We accept σ1 = σ2

• Pooled variance:

s2 =
4 · 52.20 + 5 · 29.51

4 + 5
= 39.73 ⇒ s = 6.3

• Test:

|t| = |20.84− 22.53|

6.3 ·
√

1
5 + 1

6

= 0.443 < t5+6−2;0.975 = 2.262

Conclusion: Do not reject H0. There is insufficient evidence that different catalytic
converters give different yields.
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Exercise 3:

We test the roughness of metal surfaces after polishing up using two different milling
machines. Each metal test piece is splitted in two and both splices are handled to
the two different machines, giving the following table (column 2 and 3 are measures
of roughness for both machines).

test piece machine 1 machine 2

1 1.77 1.56

2 1.32 1.30

3 1.83 1.85

4 1.02 0.94

5 1.92 1.95

6 1.68 1.55

7 2.48 2.60

8 1.55 1.32

9 0.99 0.85

10 1.96 2.00

Is there a difference between both methods (significance level α = 0.05)?
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Solution exercise 3:

Paired data!

• H0 : µD = 0 versus Ha : µD 6= 0.

• Results for the differences Di:

d = 0.06

sD = 0.1162

• Test:

|t| = |0.06− 0|
0.1162/

√
10

= 1.663 < t9;0.975 = 2.262

Conclusion: Do not reject H0. There is insufficient evidence that different
methods yield different roughness.
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Exercise 4:

A vote is to be taken among the residents of a town and the surrounding county to
determine whether a proposed chemical plant should be constructed. The
construction site is within the town limits, and for this reason many voters in the
county feel that the proposal will pass because of the large proportion of town voters
who favor the construction. To determine if there is a significant difference in the
proportions of town voters and county voters favoring the proposal, a poll is taken.

If 120 of 200 town voters favor the proposal and 240 of 500 county residents favor
it, would you agree that the proportion of town voters favoring the proposal is higher
than the proportion of county voters? Use an α = 0.05 level of significance.
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Solution exercise 4:

Let p1 and p2 be respectively the true proportions of voters in the town and county
favoring the proposal.

• H0 : p1 ≤ p2 versus Ha : p1 > p2.

• Critical region: z > 1.645 (α = 0.05).

• Computations

p̂1 =
q1

n1
= 0.60; p̂2 =

q2

n2
= 0.48; p̂ =

q1 + q2

n1 + n2
= 0.51.

• Test statistic: z = 0.60−0.48√
(0.51)(0.49)(1/200+1/500)

= 2.9.

• P (Z > 2.9) = 0.0019.

Conclusion: Reject H0 and agree that proportion of town voters favoring proposal
is higher than proportion of county voters.
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2. MLE based tests

• Consider a one-dimensional parameter θ, and it’s ML estimator θ̂ML.

• Suppose we are interested in the following hypotheses:

H0 : θ = θ0 Ha : θ 6= θ0

. Reminder (Chapter 7): Under regularity conditions, we have for a
one-dimensional parameter θ:√

nI(θ) ·
(
θ̂ML − θ

)
≈ N(0, 1), for n sufficiently large.
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• Thus, under H0, we have:√
nI(θ0) ·

(
θ̂ML − θ0

)
≈ N(0, 1),

leading to

P-value = 2 · P (Z > |zobs|),

with Z =
√
nI(θ0) ·

(
θ̂ML − θ0

)
.
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2.1 Example: Poisson

Consider X ∼ Pois(λ), P (X = x) = λxe−x

x! , x = 0, 1, . . . .

•ML estimator: λ̂ = X̄

• Fisher information: I(λ) = 1
λ

• Suppose we are interested in the following hypotheses:

H0 : λ ≤ λ0 Ha : λ > λ0

• Under H0, we have

√
nλ0 ·

(
X̄

λ0
− 1

)
≈ N(0, 1),

• Conclusion: Reject H0 when X̄ > λ0 + zα ·
√

λ0
n
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3. Likelihood ratio tests

• Let the total parameter set be denoted by Θ and the subset corresponding to H0

by Θ0

• The likelihood ratio (LR) test is then defined by

Λ =
maxθ∈Θ0L(θ)

maxθ∈ΘL(θ)
.

• Conclusion: Reject H0 for too small values of Λ, or equivalently, for too large
values of −2logΛ.
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• THEOREM:

Under regularity assumptions (not shown here), and n→∞:

−2logΛ
D−→ χ2

dim(Θ)−dim(Θ0)
.
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3.1 Example: Exponential

• Let X1, . . . , Xn be i.i.d. observations from the exponential model with density

θe−θx, x > 0, θ > 0.

• Task: Derive the LR test of approximate level α (for large sample size) for the
hypothesis problem

H0 : θ = θ0 vs. Ha : θ 6= θ0.
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• Derivation of the MLEr θ̂:

L(θ) =

n∏
i=1

θe−θXi

logL(θ) = nlogθ − θ
n∑
i=1

Xi

∂

∂θ
logL(θ) =

n

θ
−

n∑
i=1

Xi.

Thus, the MLEr is given by θ̂ = 1/X̄ .
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• The LRT for H0 : θ = θ0 versus Ha : θ 6= θ0 is given by

Λ =
θn0e
−θ0

∑n
i=1Xi

(X̄)−ne−
∑n
i=1Xi/X̄

= (θ0X̄)ne−nθ0X̄+n

=
(
θ0X̄e

−θ0X̄+1
)n
.

and

−2logΛ = −2n
[
log(X̄θ0) + 1− X̄θ0

] D−→ χ2
1.

as n→∞ if H0 : θ = θ0 holds true.
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• PROPERTY:

The LRT is asymptotically equivalent to the MLE based test.

. Illustration based on the example:

∗ Reminder: The LRT for H0 : θ = θ0 versus Ha : θ 6= θ0 is given by

−2logΛ = −2n
[
log(X̄θ0) + 1− X̄θ0

]
∗ Under H0, we know (thanks to the LLN) that X̄θ0

P−→ 1.

∗ Thus,

log(X̄θ0) = log
[
1− (1− X̄θ0)

]
≈ −(1− X̄θ0)− 1

2
(1− X̄θ0)2 − . . .
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and

−2logΛ ≈ −2n

[
−1

2
(1− X̄θ0)2 − . . .

]
=
[√
n(1− X̄θ0) + . . .

]2
.

∗ From likelihood theory, we have, under H0, that, as n→∞:√
nI(θ0)(θ̂ − θ0)

D−→ N(0, 1).

∗ Since ∂
∂θ logL(θ) = −n/θ2, we have: I(θ) = θ−2

∗ Hence, under H0, as n→∞:√
nθ−0 2

(
1

X̄
− θ0

)
=
√
n(1− θ0X̄)

1

θ0X̄

D−→ N(0, 1).
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and

√
n(1− θ0X̄)

D−→ N(0, 1).

as θ0X̄ −→ 1 as n→∞ under H0.

∗ Hence, the LRT is asymptotically (n→∞) equivalent to the LME based
test rejecting H0 when the P-value

2P
(
Z > |

√
n(1− θ0x̄obs)|

)
,

with Z ∼ N(0, 1), is smaller than the significance level α.
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4. Tests for categorical data

• Many experiments result in measurements that are qualitative or categorical
rather than quantitative, e.g., recording whether a person has hypertension
(Yes/No).

• Data associated with such measurements can be summarized by providing the
count of the number of measurements that fall into each of the distinct
categories associated with the variable, e.g., the number of people who have
hypertension and not.
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• In the analysis of count data, different questions can be asked:

. [GOODNESS OF FIT] Does the observed frequency distribution differs from a
theoretical distribution (like Poisson, for example)?

. [INDEPENDENCY] Are observations consisting of measures on two variables,
expressed in a contingency table, independent of each other?

. [HOMOGENEITY] Is the distribution of counts for two or more groups using
the same categorical variable the same or not?

• Question: Is there a test that can answer these questions?

• Answer: Yes, the Pearson’s χ2 test!
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• In 1900, Karl Pearson proposed the χ2 test statistic (denoted here by Q), which
is a function of the squares of the deviations of the observed counts from their
expected values, weighted by the reciprocals of their expected values, i.e.,

Q =

I∑
i=1

J∑
j=1

(Oij − Eij)
2

Eij

. Oij: the observed counts (obtained from a frequency table or contingency
table).

. Eij: the expected counts under H0 (need to be estimated under H0).

. I : number of categories for variable 1

. J : number of categories for variable 2 (if present)
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4.1 Goodness of �t test for counts

• Suppose we have a frequency distribution available from the observed sample.
Example:

n Oi

0-2 18

3 28

4 56

5 105

6 126

7 146

8 164

9 161

10 123

11 101

12 74

13 53

14 23

15 15

16 9

17+ 5
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• Research question: Is the Poisson (or any other count) distribution plausible
here?

• To answer this question, the χ2 test can be used with following hypotheses:

H0: The considered model is correct.

Ha: The considered model is not correct.

. Under H0, we expect Q ≈ 0.

. Under Ha, we expect Q to be sufficiently large.

• The sampling distribution of Q under H0 is approximately χ2 distribution with
number of degrees of freedom

ν = number of cells (nc)− number of independent parameters fitted (np)− 1

Our example: nc = 16; np = 1 (i.e., λ̂ from the Poisson distribution)
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• To calculate the sample value (q) of Q, we need to obtain the expected counts,
originating from the considered model (Poisson here).

Our example:

. Under the hypothesized (Poisson) model, the probability that random count
falls in any of the cells can be calculated from

P (X = k) = πk =
λke−λ

k!
k = 0, 1, 2, . . .

where λ̂ = 8.392 (average).

. Therefore, the probability that an observation falls in the first cell (i.e., 0, 1 or
2 counts) is

p1 = π0 + π1 + π2

Furthermore, p2 = π3 and p16 =
∑∞

k=17 πk.
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. Under assumption that X1, . . . , X1207 are independent Poisson, the number
of observations out of 1207 falling in given cell k follow a binomial
distribution with mean 1207 · pk

. The joint distribution of counts in all cells is multinomial with n = 1207 and
probabilities p1, . . . , p16.

⇒ Calculate expected number of counts in each cell
(e.g., for cell 4: 1207 · 0.0786 = 94.9).
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Result:
n Oi Ei

(Oi−Ei)
2

Ei

0-2 18 12.2 2.76

3 28 27.0 0.04

4 56 56.5 0.01

5 105 94.9 1.07

6 126 132.7 0.34

7 146 159.1 1.08

8 164 166.9 0.05

9 161 155.6 0.19

10 123 130.6 0.44

11 101 99.7 0.02

12 74 69.7 0.27

13 53 45.0 1.42

14 23 27.0 0.59

15 15 15.1 0.00

16 9 7.9 0.57

17+ 5 7.1 0.57

• Conclusion: P (Q > q = 8.99|H0 true) = 0.83 > 0.05 = α. ⇒ There is no
substantial evidence against the Poisson distribution.
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4.2 Dependency between discrete variables

• Consider the following observed contingency table of 2 discrete variables for
a given sample:

Variable 2

i/j 1 2 . . . J Total

1 O11 O12 . . . O1J O1.

Variable 1 . . . . . . . . . . . . . . . . . .

I OI1 OI2 . . . OIJ OI.

Total O.1 O.2 . . . O.J n

• Research question: Is there dependency between both variables?
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• To answer this question, the χ2 test can (again) be used with following
hypotheses:

H0: Both variables are independent.

Ha: Both variables are dependent.

• When H0 is true and n is large, then Q will be approximately χ2
ν distributed with

ν = IJ − (I − 1)− (J − 1)− 1 = (I − 1)(J − 1)

• The expected counts under H0 are estimated as follows:

. Eij = n · πij with unknown probability π̂ij that an individual is in class
corresponding to ith row and jth column.

. Under H0: πij = πi. · π.j, where πi. is the probability that an observation will
be classified in ith row and π.j is probability that an observation will be
classified in jth column.
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. The MLE π̂i. is simply the proportion of observations in the sample that are
classified in the ith row, i.e., p̂i. = Oi./n. Similarly: p̂.j = O.j/n.

. Eij ≈ n · p̂i. · p̂.j =
Oi.·O.j
n , leading to the following expected contingency

table:

Variable 2

i/j 1 2 . . . J Total

1 E11 E12 . . . E1J E1.

Variable 1 . . . . . . . . . . . . . . . . . .

I EI1 EI2 . . . EIJ EI.

Total E.1 E.2 . . . E.J n

• Remark: When some cells in table with expected frequencies < 5
⇒ Regroup cells!!
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Example:

• Consider the following observed contingency table:

Income

1 2 3 4 Total

east 14 23 6 1 44

west 2 5 6 3 16

Total 16 28 12 4 60

• Hypotheses::

H0: There is independency between the income of persons and location.

Ha: There is dependency between the income of persons and location.
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• The expected contingency table is given as follows:

Income

1 2 3 4 Total

east 11.7 20.5 8.8 2.9 44

west 4.3 7.5 3.2 1.1 16

Total 16 28 12 4 60

• Sample value: q = 10.8.

• Conclusion: P (Q ≥ q) = P (Q ≥ 10.8) < 0.05 = α, where Q ∼ χ2
3.

→ Reject H0.

c© Martial Luyts 87



4.3 Testing for homogeneity

• Imagine that we select subjects from several different populations and that we
observe a discrete random variable for each subject.

• The χ2 test can also be used to test whether or not the distribution of that
discrete random variable is the same in each population.

Example:
A survey of voter sentiment was conducted in four cities to compare the fraction
of voters favoring political party A. Random samples of 200 voters were polled
in each city, leading to the following contingency table

opinion 1 2 3 4 total

favor A 76 53 59 48 236

do not favor A 124 147 141 152 564

total 200 200 200 200 800

Do the data present sufficient evidence to indicate that the fractions of voters
favoring party A differ in the four cities?
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• The following hypotheses are then constructed:

H0 : πi1 = . . . = πiJ (= πi.) ∀i = 1, . . . , I

Ha : H0 is not true.

. I: number of categories in the discrete random variable (here 2, i.e., favor A
or not).

. J: number of populations/groups (here 4, i.e., no. of cities).

. Our example: πij = the fraction of voters in category i and city j.

• If we denote that fraction of voters favoring A as π1. and hypothesize that π1. is
same for all cities, then first-row probabilities are all equal to π1. and the MLE is
π̂1. = 236/800.

c© Martial Luyts 89



• The expected number of individuals favoring A equals 200 · p, which is estimated
by 200 · 236/800.

• Conclusion: P (Q ≥ q) = P (Q ≥ 10.72) = 0.01334 < 0.05 = α, where
Q ∼ χ2

3.
→ Reject H0.

c© Martial Luyts 90


	1. Sample Statistics
	 1.1 Introductory material
	 1.2 Strategy for study of distribution of sample statistic
	 1.3 Sample statistics
	 1.4 Moments of sample statistics
	 1.5 Sample statistics distributions
	 1.5.1 Gaussian population
	 1.5.2 Non-Gaussian population
	2. Limit Theorems
	 2.1 Law of Large numbers (LLN)
	 2.1.1 Visualization through simulation
	 2.1.2 Application in Gambling: Casino roulette
	 2.2 Central Limit Theorem (CLT)
	 2.2.1 Illustrations
	 2.2.2 Normal approximations to different non-Gaussian distributions
	 2.2.3 Continuity Correction
	 2.2.4 Exercises
	3. Extra's
	 3.1 Poisson approximation for binomial probabilities
	 3.2 Normal approximation for Poisson probabilities
	 3.3 Exercises
	 3.4 Monte-Carlo simulation
	 3.4.1 Monte-Carlo simulation of a probability
	 3.4.2 Monte-Carlo simulation of an integral
	1. Statistical estimation problem
	 1.1 Introductory material
	2. Bias, variance and mean squared error
	 2.1 Definition
	 2.2 Exercises on sample statistics
	 2.3 Best estimator
	 2.3.1 Existence of minimum-variance unbiased estimator
	 2.3.2 Methods to find a minimum-variance unbiased estimator (MVUE)
	3. Asymptotic properties
	 3.1 Introduction
	 3.2 Consistency
	 3.2.1 Consistency on sample statistics
	 3.3 Asymptotic normality
	 3.3.1 Transformation of asymptotic normal estimators
	 3.3.2 Asymptotic normality on sample statistics
	4. Sufficient estimator
	 4.1 Introduction
	 4.2 Formal definition
	 4.3 Neyman-Fisher Factorization Criterion 
	 4.4 Examples
	5. Maximum likelihood estimator
	 5.1 Introduction
	 5.2 Terminology
	 5.3 Concept through example
	 5.4 Large sample properties of MLE
	 5.5 Fisher information and Cramér-Rao variance bound
	 5.6 Examples
	1. Confidence Intervals
	 1.1 Introductory material
	 1.2 Definition
	 1.3 Interpretation
	 1.4 Construction procedure
	 1.4.1 CI for normal mean under known variance
	 1.4.2 CI for normal mean under unknown variance
	 1.4.3 CI for normal variance
	 1.4.4 CI for proportion
	 1.4.5 CI for difference of 2 independent means
	 1.4.6 CI for ratio of 2 variances
	 1.4.7 CI for paired data
	2. Summary
	3. Examples
	 3.1 Exercises
	1. Hypothesis testing
	 1.1 Introductory material
	 1.2 Example
	1.2.1. Null and alternative hypothesis
	1.2.2. Test statistic
	1.2.3. Decision making
	1.2.4. Exercises
	 1.3 Types of errors
	1.3.1. Power
	1.3.2. Sample size calculation
	 1.4 Hypothesis testing versus confidence intervals
	2. Different tests
	 2.1. Classical tests
	2.1.1. Test statistic for two proportions
	2.1.2. Exercises
	 2.2 MLE based tests
	2.2.1. Examples
	 2.3. Likelihood ratio tests
	2.3.1. Examples
	 2.4. Tests for categorical data
	2.4.1. Goodness of fit
	2.4.2. Testing for homogeneity
	2.4.3. Testing for homogeneity

